2. Глубинное строение района Авачинско-Корякской группы вулканов

Современные вулканы располагаются в районах, где наиболее активно протекают геодинамические процессы в литосфере, выраженные повышенной сейсмичностью, магматизмом и гидротермальной активностью. Изучение глубинного строения современных вулканов имеет важное значение для развития теоретической геологии и геодинамики. Практическое значение имеет поиск геотермальных месторождений, связанных с магматическими очагами, питающих вулканы. На Южной Камчатке геофизическими методами наиболее изучен район Авачинско-Корякской группы вулканов, расположенный ~ в 50км от г.Петропавловск-Камчатский. Действующими и наиболее крупными из вулканов этой группы являются Корякский и Авачинский. Вулканические постройки сложены четвертичными и современными эффузивно-пирокластическими образованиями. Они приурочены к Авачинской депрессии, выполненной палеоген-неогеновыми вулканогенно-осадочными породами. Депрессия является составной частью так называемой Петропавловск-Малкинской зоны поперечных дислокаций, имеющей северо-западное простирание. Большую роль в строении зоны играют разломы северо-западной ориентировки, определяющие ее блоковое строение [7]. В районе Авачинско-Корякской группы вулканов проведены гравиметрические [13], сейсмологические [2,8,9 и др.], и электромагнитные [12,14,17] исследования. К настоящему времени мы располагаем большим объемом геофизических данных, комплексный анализ которых с привлечением современных методик дает возможность разработать глубинную модель земной коры района Авачинско-Корякской группы вулканов и протекающих здесь геодинамических процессов.

Сейсмологические исследования

ris6sm.gif (4226 bytes)

Рис. 6

 Результаты сейсмологического "просвечивания" литосферы под Авачинско-Корякской группой вулканов позволили предположить существование на глубинах 20-90 км одной или двух неоднородностей, обусловивших затухание сейсмических волн от камчатских землетрясений [10,31,32 и др.]. В области границы М она предположительно имеет вытянутую форму, совпадающую по простиранию с вулканической группой. Согласно нашим построениям, изложенным выше, этот район приурочен к низкоскоростной мантии и располагается в зоне высоких градиентов скорости Vp в верхней коре. Эти данные не противоречат полученным ранее, так как значения скорости под вулканами практически совпадают и сохраняется простирание предполагаемых аномалий затухания и зон высоких градиентов Vp.

ris7sm.gif (6002 bytes)

Рис. 7

 В 80-90-е годы в районе Авачинско-Корякской группы вулканов выполнены сейсмические исследования с использованием землетрясений и взрывов [2,8,9,15 и др.]. На сейсмическом разрезе выделены зоны аномальных значений скорости (Vp)и поглощения Р-волн (рис.6). Зона А характеризуется повышенным поглощением высокочастотной части спектра сейсмических сигналов. Подошва этой зоны располагается не глубже, чем 3 км и, очевидно, представлена смесью твердой и расплавленной фаз глубинного вещества. Выделение зоны В обусловлено наличием в нижней части Авачинской депрессии мощного волновода с пониженными (~ на 6% относительно вмещающей толщи пород) значениями скорости Vp. Зона С характеризуется повышенными значениями Vp(до 6,6-6,7 км/c), что может быть связано с глубинной высокоскоростной интрузией. Зона D выделена как область относительно пониженных значений скорости Vpв средней части коры под конусом вулкана. Между зонами D и C отмечено отсутствие отражающих площадок. В целом, распределение отражающих площадок по разрезу различно. В верхней части они залегают согласно сейсмическим границам, а с глубины ~ 10 км - практически выполаживаются. Это соответствует существующим представлениям о природе сейсмических разделов в земной коре и может свидетельствовать о повышенной трещиноватости пород на этой глубине [9,20]. Возможно, выделенная на разрезе зона повышенной скорости в коре - это область, в которой трещины "закрыты" остывшим магматическим расплавом, поступившим сюда из корового магматического очага. На рис.6 также отмечены некоторые особенности сейсмичности района Авачинского вулкана в период его активизации в 1994 и 1997 гг. Из этих данных видно, что основная масса землетрясений происходит в конусе вулкана и в пределах Авачинского грабена до глубины ~ 10 км. Можно предположить, что грабен представляет собой разлом, в котором в настоящее время протекают активные тектонические процессы. Важно отметить, что за рассматриваемый период практически не отмечены землетрясения в нижней части Авачинского грабена. Их основная масса располагается в грабене до глубины ~ 3 км (в частности, за период 1997 г.) и глубже 5-6 км уже в кристаллической коре. Отсюда можно сделать вывод, что в основании грабена существуют какие-то специфические условия, в которых породы находятся либо в состоянии повышенной пластичности, либо трещиноватости с заполнением трещин жидким флюидом. Этим можно объяснить понижение скорости Vp в основании грабена.

Электромагнитные исследования

ris8sm.gif (4045 bytes)

Рис. 8

 По данным региональных исследований методами магнитотеллурического (МТЗ) и вертикального электрического (ВЭЗ) зондирований получено представление об обобщенном геоэлектрическом разрезе региона [15]. В верхней части разреза залегают четвертичные вулканогенные и осадочные образования сопротивлением сотни-первые тысячи Ом.м и более, мощностью первые сотни метров. Ниже залегает кайнозойская толща со средним продольным сопротивлением от десятков до первых сотен Омм. Консолидированный фундамент имеет сопротивление тысячи Ом.м. Глубинная часть разреза содержит коровый и астеносферный проводящие слои.

ris9sm.gif (4036 bytes)

Рис. 9

 В последние годы в районе Авачинско-Корякской группы вулканов выполнен большой объем более детальных площадных исследований МТЗ, позволяющих получить дополнительную информацию об электропроводности земной коры. Методика и результаты качественной интерпретации МТЗ рассмотрены в [14]. Для изучения глубинной электропроводности использовано около 1000 МТЗ. По данным интерпретации кривых МТЗ получена карта интегральной проводимости осадочно-вулканогенного чехла, перекрывающего кристаллический фундамент (рис.7). На этой карте выделена зона повышенной проводимости, имеющая северо-западное простирание. Ширина зоны меняется от 10 км на юго-востоке до 30 км на северо-западе. Выявленная зона связывается с грабеном, выполненным преимущественно терригенными отложениями. В районе Авачинско-Корякской группы вулканов отмечается максимальная проводимость зоны до 600 См, что может быть обусловлено наличием жидкой фазы (растворов и магматических расплавов). По результатам интерпретации кривых МТЗ составлена также схема глубинной электропроводности исследуемой площади. Последняя районируется на две области с различной электропроводностью земной коры: юго-западную и северо-восточную (рис.8). Первая содержит коровый слой повышенной электропроводности. Вторая отмечается пониженной электропроводностью верхней части коры.

Полученные результаты уточнены с помощью численного двумерного моделирования. Для данной цели выбран профиль АА протяженностью около 160 км (рис.9). Он ориентирован примерно вдоль СФЗ. Из рисунка видно, что в юго-западной части выделяется коровый слой повышенной электропроводности сопротивлением 10-20 Ом.м. Кровля слоя поднимается с глубины 25 км на юго-западе до глубины 10 км под современными вулканами. Здесь осадочно-вулканогенный чехол содержит аномалию с пониженным сопротивлением 8 Ом.м до глубины 6 км. Эта аномалия фиксирует грабен, выполненный преимущественно проводящими породами. Современные вулканы приурочены к бортовой части грабена. Земная кора северо-восточной части профиля не содержит коровых проводников. Она отличается повышенным электрическим сопротивлением в районе Шипунского п-ова.

Комплексная интерпретация геолого-геофизических данных

ris10sm.gif (4416 bytes)

Рис. 10

 Глубинная геоэлектрическая модель района сопоставлена с графиками поля силы тяжести и теплового потока (рис.9). Высокое электрическое сопротивление верхних частей литосферы на северо-восточном окончании профиля соответствует повышенному уровню поля силы тяжести. Это можно объяснить тем, что в районе Шипунского полуострова верхняя часть земной коры сложена породами с повышенной плотностью. Состав этих пород близок к ультраосновным. В поле силы тяжести в виде аномалий более высокого порядка также проявились структуры верхней части земной коры, сложенные породами, различными по своему фациальному составу и плотности.

По сейсмическим и гравитационным данным с помощью трехмерного гравитационного моделирования получена объемная упруго-плотностная модель (рис.10). Для моделирования использовались материалы гравиметрической съемки, сведения о скоростных и плотностных свойствах пород и их корреляции по данному району и миру [15]. Модель дает представление о строении блока литосферы размерами 70х70х50 км. В верхней части земной коры выделена отрицательная интенсивная аномалия северо-западного простирания, фиксирующая Авачинский грабен. Эта аномалия продолжается до глубины ~30 км. С увеличением глубины форма аномалии становится более изометрической. При этом простирание изолиний меняется от северо-западного в верхней коре до субмеридианального - в нижней, и северо-восточного - в верхней мантии. Коровая аномалия пониженных значений упруго плотностных свойств в общих чертах соответствует коровой аномалии повышенной электропроводности. По-видимому, аномалии отражают существование в земной коре разлома, насыщенного жидкими флюидами. В осадочно-вулканогенном чехле он выражен в виде грабена, заполненного мощной толщей слабоуплотненных, низкоскоростных, проводящих образований. Из упруго-плотностной модели видно, что северо-западную ориентировку имеют только структуры верхних частей земной коры. Верхняя мантия характеризуется северо-восточным простиранием изолиний упруго-плотностных свойств, отвечающим простиранию CФЗ.

Рассмотрим фоновый тепловой поток в связи с глубинными процессами по направлению с юго-запада на северо-восток в сторону м. Шипунский (рис.9) [24,25]. Из рисунка видно, что он уменьшается почти в два раза. Это свидетельствует о том, что в юго-западной части площади породы земной коры могут быть разогреты сильнее, чем в северо-восточной. В результате повышенного разогрева активно проявились процессы дегидратации, плавления пород земной коры и вынос большого объема магматического материала на дневную поверхность. В земной коре, по-видимому, сформировалась проницаемая зона, насыщенная гидротермальными растворами. Это в полной мере можно отнести к самой западной части профиля, где на поверхности возраст магматических пород оценивается в первые десятки млн.лет. Оценки показывают, что за такой период тепло от глубинного источника может проникнуть через всю земную кору и достичь земной поверхности. В результате здесь фиксируется повышенный тепловой поток в приповерхностных частях земной коры. Однако, в районе Авачинско-Корякской группы вулканов подъему проводящей зоны до глубины 10 км отвечает тепловой поток, близкий к "нормальному". Возраст магматизма в данном районе составляет первые млн.лет. За этот период, по-видимому, кондуктивный тепловой поток от глубинного источника еще не проник в полной мере в земную кору. Следовательно, динамические процессы здесь не получили такого развития, как на юго-западе в Центрально-Камчатской вулканической зоне. В районе Авачинских вулканов, вероятно, преобладают конвективные формы переноса тепла в виде магматических расплавов и гидротермальных растворов, что находит отражение в подъеме проводящей зоны. При этом повышенная проводимость отмечается непосредственно под действующими вулканами.

Глубинная модель района Авачинского вулкана

ris11sm.gif (4271 bytes)

Рис. 11

 На основе рассмотренных результатов с привлечением данных о тепловом потоке, магматизме и т.д. создана глубинная геолого-геофизическая модель Авачинского вулкана, изображенная на рис.11 Модель включает коровую зону повышенной трещиноватости (проницаемости) с наличием гидротермальных растворов. Земная кора на глубине 15-25 км содержит магматический очаг. Выше, на глубине 6-10 км расположена интрузия. Непосредственно под конусом вулкана находится периферический магматический очаг на глубине ~ 0-2 км. В верхних частях земной коры выделяется Авачинский грабен. В отложениях нижней части разреза он содержит, по-видимому, жидкие флюиды.

Рассмотрим возможные геодинамические процессы в районе Авачинского вулкана. Коровый магматический очаг образовался, по-видимому, в один из циклов магматической активизации Камчатки, когда глубинное вещество проникло в земную кору. Здесь на уровне ~ 15-25 км образовалась магматическая камера. Процессы поступления и накопления магмы сопровождались плавлением пород. Преимущественный состав лав, излившихся на поверхность, средний и основной. Породы представлены базальтами, андезито-базальтами, андезитами и дацитами. Наиболее распространены андезито-базальты. На мантийный источник первоначальных магм указывают ксенолиты, представленные периодотитами и пироксенитами. Верхняя часть магматического очага на глубине 6-10 км уже застыла и является интрузией. Она перекрывает существующий коровый магматический очаг и, по-видимому, в значительной мере затрудняет поступление магмы в периферический очаг в основании конуса вулкана.

Предполагается, что в настоящее время важную роль в процессах, протекающих в районе вулкана, играет коровая зона повышенной проницаемости (глубинный разлом), по которой гидротермальные растворы поднимаются с глубины 25-35 км. Эти растворы, поступая в верхние части земной коры, существенно понижают температуру плавления кислых и средних пород. В результате образуются магматические расплавы в зоне корового магматического очага. По узким каналам они проникают вверх в районе грабена и подпитывают периферический очаг в основании конуса вулкана. Не исключается также поступление магмы непосредственно вверх из корового очага в периферический. Однако этот вариант менее вероятен, так как на пути магмы - зона повышенной плотности пород, и для ее проплавления необходима большая дополнительная энергия, которая возможна лишь во время следующего цикла магматической активизации и интенсивного притока магмы из более глубинных источников. Мы приходим к выводу, что в настоящее время в период затишья магматической активности происходит накопление жидких флюидов в Авачинском грабене и их поступление в периферический очаг. В результате возникновения избыточных давлений, достаточных для вскрытия пробки в кратере, закупоривающей магмовыводящий канал, может произойти слабое извержение вулкана с выходом лавы. По-видимому, такое извержение было в феврале 1991 года.

Следует отметить, что выявленная в Авачинском грабене зона, насыщенная жидкими флюидами, вызывает повышенный интерес к геотермальным источникам тепла с целью обеспечения энергией близко расположенного г.Петропавловск-Камчатский, испытывающего сильный энергетический кризис. Этот район является вполне доступным для изучения методами геофизической разведки и глубокого бурения. Предполагаемые размеры перспективной зоны 9х12 км (рис.7). Для ее вскрытия рекомендуется бурение скважины глубиной до 4 км. Результаты бурения дадут основание для дальнейшей разведки геотермального месторождения.

Список литературы

1. Балеста С.Т., Гонтовая Л.И. Сейсмическая модель земной коры Азиатско-Тихоокеанской зоны перехода в районе Камчатки//Вулканология и сейсмология. 1985, N4.С.83-90.

2. Балеста С.Т., Гонтовая Л.И., Гринь Н.Е., Сенюков С.Л., Гордиенко Л.Я. Возможности сейсмического метода изучения зон питания современных вулканов //Вулканология и сейсмология. 1989. N6. С.42-53.

3. Болдырев С.А. О схеме распределения скорости упругих волн в области смыкания Курило-Камчатской и Алеутской островных дуг//Докл.АН СССР.1974.Т.215.N2.С.331-4.Болдырев С.А., Кац С.А. Трехмерная скоростная модель верхней мантии переходной зоны от Тихого океана к Азиатскому континенту//Вулканология и сейсмология.1982.N2.С.80-95.

5.Ваньян Л.Л. О моделях глубинной электропроводности // Изв. АН СССР. Физика Земли. 1981. N5.С.57-66.

6.Ваньян Л.Л. Флюиды в верхней части консолидированной коры в свете данных геоэлектрики//Физика Земли. 1994. N6.С.89-96.

7. Геология СССР. Т.31. Камчатка, Курильские и Командорские острова. Геологическое описание. М.:Недра, 1964. 733 с.

8. Глубинное сейсмическое зондирование Камчатки. М.:Наука, 1978. 130 с.

9. Гонтовая Л.И., Сенюков С.Л. О сейсмической модели земной коры Авачинского вулкана на Камчатке//Вулканология и сейсмология. 2000. N3. С.57-62.

10. Горельчик В.И. Сейсмичность Южной Камчатки //Сейсмичность и сейсмологический прогноз, свойства верхней мантии и их связь с вулканизмом на Камчатке. Новосибирск: Наука, 1974. С.52-62.

11. Декин Г.П., Зубин М.И. Рельеф основных поверхностей раздела земной коры Камчатки //Геофизические поля северо-запада Тихоокеанского подвижного пояса. Владивосток: ДВНЦ АН СССР, 1976. С.44-55.

12. Зубин М.И., Козырев А.И. Гравитационная модель строения Авачинского вулкана (Камчатка) //Вулканология и сейсмология. 1989. N 1. С.81-94.

13. Кобранова В.Н. Петрофизика. М.:Недра, 1986. 392 с.

14. Мороз Ю.Ф. Электропроводность земной коры и верхней мантии Камчатки. М:Наука, 1991. 181 с.

15. Мороз Ю.Ф., Гонтовая Л.И., Зубин М.И. Глубинное строение Камчатки по геофизическим данным //Физика Земли. 1996. С.92-99.

16. Мороз Ю.Ф., Нурмухамедов А.Г. Магнитотеллурическое зондирование Петропавловского геодинамического полигона на Камчатке //Вулканология и сейсмология. 1998. N 2. С.77-84.

17. Мороз Ю.Ф., Нурмухамедов А.Г., Лощинская Т.А. Магнитотеллурическое зондирование земной коры Южной Камчатки// Вулканология и сейсмология.1995. N4-5,с.127-139.

18. Николаев А.В., Санина И.А. Метод и результаты сейсмического просвечивания литосферы Тянь-Шаня и Памира//Докл.АН.СССР.1982.Т.264.N1.С.69-72.

19. Попова О.Г., Санина И.А., Кудрина Я.И., Фремд А.Г. Скоростное строение районов Спитакского землетрясения по результатам обработки телесейсмических записей Р-волн способом сейсмической томографии//Вулканология и сейсмология.1993.N1. С.93-103.

20. Павленкова Н.И. Роль флюидов в формировании сейсмической расслоенности земной коры //Физика Земли. 1996. N 4. С.51-62.

21. Селиверстов Н.И. Строение дна прикамчатских акваторий и геодинамика зоны сочленения Курило-Камчатской и Алеутской островных дуг.М.:Научный мир.1998.164с.

22. Славина Л.Б., Федотов С.А. Скорости продольных волн в верхней мантии под Камчаткой// Сейсмичность и сейсмический прогноз, свойства верхней мантии и их связь с вулканизмом на Камчатке.М.:Наука,1974.С.188-200.

23. Смирнов Ю.Б. Связь теплового поля со строением и развитием земной коры и мантии//Геотектоника.1968. N6.С. 3-25.

24. Смирнов Я.Б., Сугробов В.М. Тепловой поток, гидротермальная активность и динамика развития глубинных зон областей кайнозойского вулканизма // Геодинамика, магмообразование и вулканизм. Петропавловск-Камчатский, 1974. С.175-196.

25. Смирнов Я.Б.,Сугробов В.М. Земной тепловой поток в Курило-Камчатской и Алеутской провинциях//Вулканология и сейсмология.1980. N1. С.16-31.

26. Строение земной коры и верхней мантии в зоне перехода от Азиатского континента к Тихому океану. Новосибирск. Наука.1976.С.367.

27. Тулина Ю.В., Зверев С.М., Красильщикова Г.А. Земная кора и верхняя мантия в области фокальной зоны и Восточной Камчатки. В сб.: Сейсмичность и свойства границы Мохоровичича. М. Наука.1974. 88 с.

28. Федотов С.А., Славина Л.Б. Оценка скоростей продольных волн в верхней мантии под северо-западной частью Тихого океана и Камчаткой // Изв. АН СССР. Сер. Физика Земли. 1968. N2. С.8-32.

29. Федотов С.А. Геофизические данные о глубинной магматической деятельности под Камчаткой и оценка сил, вызывающих подьем магмы к вулканам // Изв. АН СССР. Сер. геол. 1976. N4. С.5-16.

30. Федотов С.А., Гусев А.А., Чернышева Г.В., Шумилина Л.С. Сейсмофокальная зона Камчатки (геометрия, размещение очагов землетрясений и их связь с вулканизмом)//Вулканология и сейсмология.1985. N4. С.91-108.

31. Федотов С.А., Фарберов А.И. Об экранировании поперечных сейсмических волн и магматическом очаге в верхней мантии в районе Авачинской группы вулканов//Вулканизм и глубинное строение Земли. М.:Наука, 1996.С.43-48.

32. Фарберов А.И. Магматические очаги вулканов Восточной Камчатки по сейсмологическим данным. М.:Наука.1974.88 с.

33. Шарапов В.Н.,Симбирев И.Б., Симбирева И.Г. Блоковая структура Южной Камчатки и связь с ней вулканизма верхненеоген-четвертичного возраста//Проблемы глубинного магматизма. М.: Наука.1979.С.155-180.

34. Шапиро М.Н., Ермаков В.А., Шанцер А.Е. и др. Очерки тектонического развития Камчатки. М.:Наука. 1987. 248 с.

36. Brace W.F.,Walsh I.B., Frangos W.T. Permeability of Granite under High pressure//J. Geophys. Res. 1968.V.73.N6. P.110-115.


Информация о работе «Глубинное строение Южной Камчатки по геофизическим данным»
Раздел: География
Количество знаков с пробелами: 39039
Количество таблиц: 11
Количество изображений: 11

Похожие работы

Скачать
37187
3
3

... ХПП не ясна, но судя по офиолитовому составу, можно полагать, что это фрагмент, остатки позднемеловой океанической плиты. 2. Наблюдения в северной части показывают, что Центрально-Камчатская депрессия выполнена почти полным разрезом палеоген-неогеновых отложений. Нижние их горизонты без видимого несогласия перекрывают верхнемеловые отложения островодужного типа. Наиболее мощные разрезы палеоген- ...

Скачать
29329
0
2

... а поверхность "М" - на глубине 22 км, в юго-западной части горста верхнемеловой фундамент находится на глубине от 3 до 1 км, а поверхность "М" поднимается до 20 км. Особенности локализации вулканизма Как видно из приведенной краткой характеристики основных структур, кайнозойский вулканизм проявился на всей рассматриваемой территории, за исключением Большерецкой плиты. Эта структура в палеогене ...

Скачать
39007
0
0

... П.И., Широков В.A. Состояние и сейсмический режим Авачинского вулкана в 1971-1975 гг. // Бюлл. вулканол. станций. 1977. N 53. С.46-52. Токарев П.И., Фирстов П.П., Лемзиков В.К. Сейсмологические исследования на вулкане Карымском в 1966 г.// Бюлл. вулканол. станций. 1969. N 45. С.21-31. Токарев П.И., Широков В.A., Зобин В.М. Сейсмические явления, связанные с извержением побочного кратера им. ...

Скачать
45228
6
6

... построек отмечено, как правило, повышение магнитного поля и, в основном, его положительные значения. Интенсивность аномалий, наблюдаемых на акватории над отдельными подводными вулканами в северной части Курильской островной дуги, достигает 1000 нТл. Выявлено большое количество высокоградиентных зон. Горизонтальный градиент поля нередко достигает 100 нТл/км [46,47,68,69]. Подавляющая часть ...

0 комментариев


Наверх