Оглавление

Оглавление. 1

Глава 1 АВТОМАТИЧЕСКИЙ КОНТРОЛЬ. 2

1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ.. 2

Глава 2. Технологические измерения и приборы в прокатном производстве. 16

2.1 ВВЕДЕНИЕ.. 16

2.2 ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ДЛИНЫ И СКОРОСТИ ПРОКАТЫВАЕМОГО МЕТАЛЛА.. 18

2.2.1. ЭЛЕКТРОМЕХАНИЧЕСКИЕ ИЗМЕРИТЕЛИ ДЛИНЫ... 19

2.2.2 ФОТОИМПУЛЬНЫЕ ИЗМЕРИТЕЛИ ДЛИНЫ... 21

2.2.3 Фотоимпульсные измерители длины с прямым счетом импульсов. 24

Глава 3. Электрические машины и электропривод автоматических устройств. 28

3.1 BPAЩAЮЩИECЯ TPAHCФOPMATOPЫ... 30

3.1.1 Назначение и устройство вращающихся трансформаторов. 30

3.1.2 Cинycнo-кocинycный вpaщaющийcя тpaнcфopмaтop. 32

3.1.3. Линейный вращающийся трансформaтop. 36

Глава 4 Управление процессами прокатного производства. 40

4.1ПPИMEHEHИE УBM ПPИ АBTOMАTИЗАЦИИCOPTOBЫX ПPOKATHЫX CTАHOB.. 40

4.1.1 АCУ TП непрерывного мелкосортного стана. 40

4.1.2 Информационное сопровождение металла и начальная настройка стана. 41

4.1.3. Cиcтeмa ynpaвлeния cкopocтным peжимoм пpoкaтки (УCPП) 43

4.1.4. Cиcтeмa oптимaльнoro pacкpoя пpoкaтa (COPП) 44

4.1.5. ACУ TП бaлoчныx пpoкaтныx cтaнoв. 46

4.1.6. Aвтoмaтизиpoвaннaя cиcтeмa пpoгpaммнoгo yпpaвлeния пpoкaтными клeтями. 50

Глава 5. Автоматическое регулирование и регуляторы.. 55

5.Типовые идеальные регуляторы непрерывного действия. 55

5.1.Пропорциональные регуляторы.. 55

5.2. Интегральные регуляторы. 57

5.3. Пponopцuoнaльнo-интeгpaльныe регуляторы. 58

5.4. Пponopцuoнaльнo-дuффepeнцuaльныe регуляторы. 59

5.5 Пponopцuoнaльнo-uнтeгpaльнo-дuффepeнцuaльныe peгyлятopы. 60


Глава 1 АВТОМАТИЧЕСКИЙ КОНТРОЛЬ

ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ

1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Задачей контроля (от французского controle—проверка чего-либо) является обнаружение событий, определяющих ход того или иного процесса. В случае, когда эти события обнаруживаются без непосредственного участия человека, такой контроль называют автоматическим.

Важнейшей составной частью контроля является изме­рение физических величин, характеризующих протекание процесса. Такие физические величины называются параме­трами процесса. Металлургические процессы в основном характеризуются значениями таких физических величин (параметров), как температура, давление, расход и коли­чество, химический состав и концентрация жидких, паро­вых и газовых сред; уровень жидкого металла и сыпучих материалов; гранулометрический состав (крупность) и влажность шихтовых материалов, давление (вакуум) в технологических линиях и агрегатах.

Измерением называют нахождение значения физической величины опытным путем с помощью специальных техни­ческих средств. Конечной целью любого измерения явля­ется получение количественной информации об измеряемой величине. В процессе измерения устанавливается, во сколько раз измеряемая физическая величина больше или меньше однородной с нею в качественном отношении физи­ческой величины, принятой за единицу.

Число, выражающее отношение измеряемой величины к единице измерения, называется числовым значением изме­ряемой величины. Оно может быть целым или дробным, но является отвлеченным числом. Значение величины, приня­тое за единицу измерения, называется размером этой величины.

Если Q-измеряемая физическая величина, |Q|-не­который размер физической величины, принятой за еди­ницу измерения, q — числовое значение величины Q в при­нятой единице измерения, то результат измерения величи­ны Q может быть представлен следующим равенством:

Q=q |Q| (1)

Уравнение (1) называют основным уравнением измере­ния. Из него следует, что значение q зависит от размера выбранной единицы измерения |Q|. Чем меньше выбран­ная единица, тем больше для данной измеряемой величины будет числовое значение. Например, длина 1 м равна 10дм, 100 см и т.д.

Результат всякого измерения является именованным числом. Поэтому для определенности написания результата измерения рядом с числовым значением измеряемой вели­чины ставится сокращенное обозначение принятой единицы измерения. С 1963 г. в СССР введена как предпочтитель­ная Международная система единиц по ГОСТ 9867—61. которая сокращенно обозначается СИ. На основе учета ре­зультатов первого периода внедрения ГОСТ 9867—61 и при­нятого в 1978 г. Постоянной комиссией СЭВ по стандарти­зации стандарта СТ СЭВ 1052—78 «Метрология. Единицы физических величин» в СССР разработан ГОСТ 8.417—81 «ГСИ. Единицы физических величин» со сроком внедрения с 1 января 1982 г. СИ принята в большинстве стран мира (свыше 130) и признана всеми международными организа­циями.

Кратные и дольные единицы измерения образуются из наименований единиц СИ при помощи установленных ГОСТ 8.417—81 приставок для образования кратных и дольных единиц, приведенных в приложении 1.

Сведения о значениях измеряемых физических величин называют измерительной информацией.

Сигналом измерительной информации называется сиг­нал, функционально связанный с измеряемой физической величиной (например, сигнал от термометра сопротивле­ния).

 Средством измерения (СИ) называют техническое уст­ройство, используемое при измерениях и имеющее норми­рованные метрологические свойства.

 Сигнал измерительной информации, поступающий на вход средства измерений, называют входным сигналом, получаемый на выходе, - выходным сигналом средства измерений.

Для контроля параметров технологических процессов в большинстве случаев используется не одно, а несколько средств(измерения и преобразования сигналов, образую­щих канал измерения этого параметра.

Существуют три основные вида средств измерений: ме­ры, измерительные преобразователи, измерительные приборы.

Мера—это средство измерения, предназначенное для воспроизведения физической величины заданного размера.

Меры бывают однозначные, и многозначные. Примерами однозначных мер являются: катушки сопротивления, ка­тушки индуктивности, нормальные элементы и др. К мно­гозначным мерам относятся: магазины сопротивлений, индуктивностей и емкостей, калибраторы напряжения и то­ка и др.

Измерительный преобразователь — это средство изме­рении, предназначенное для выработки сигнала измеритель­ной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не подда­ющейся непосредственному восприятию наблюдателем (в практике часто применяется термин «датчик»),

Измерительный преобразователь, к которому подведена измеряемая величина, т.е. первый в канале измерения (из­мерительной цепи), называется первичным измерительным преобразователем (или сокращенно первичным преобразо­вателем). Например, сужающее устройство (диафрагма) для измерения расхода, электрод сигнализатора уровня и т.п.

В системах автоматического контроля применяются устройства для выдачи сигнала о выходе значения пари метра за установленные пределы. Причем сигнал появля­ется при наличии самого факта выхода независимо от его размера. Такие устройства называют датчиками-реле или сигнализаторами.

Для удовлетворения возросших потребностей промыш­ленности создана Государственная система промышленных приборов и средств автоматизации (ГСП), представ­ляющая собой эксплуатационно, информационно, энергетически, метрологически и конструктивно организованную совокупность средств измерений, средств автоматизации,, средств управляющей вычислительной техники, а также программных средств, предназначенных для построения автоматических и автоматизированных систем измерения, контроля, регулирования, диагностики и управления про­изводственными процессами, технологическими линиями и агрегатами (ГОСТ 26.207—83. ГСП. Основные положе­ния). Номенклатура технических средств ГСП в настоящее время насчитывает свыше 2 тыс. типов изделий, организа­ция ГСП дает возможность создавать самые разнообразные, любой сложности системы автоматического контроля, ре­гулирования и управления из стандартизованных средств измерения и средств автоматизации.

В зависимости от вида энергии питания, входных и вы­ходных сигналов ГСП разделяют на электрическую, пневматическую и гидравлическую ветви. В основном применя­ют средства электрической и изредка пневматической вет­вей ГСП, которыми предусмотрены общепромышленные унифицированные электрические и пневматические сигналы передачи информации со следующими (пределами) изме­рений:

сигнал постоянного тока 0—5; 5—0—5; 0—20; 4—20 мА;

сигнал напряжения постоянного тока 0—1; 1—0—1;

0-Ю; Ю—0—10В;

сигнал напряжения переменного тока частотой 50 и 400 Гц 0,25—0—0,25; 0—0,5; 1—0—1; 0—2 В (у приборов с сигналами напряжения переменного тока частотой 50 и 400 Гц, основанных на измерении взаимной индуктивно­сти, пределы измерения взаимной индуктивности выбира­ются из ряда 0—10; 10—0—10; 0—20 МГн при номиналь­ном токе питания 0,125 или 0,32 А. Противоположные зна­чения взаимной индуктивности получаются при перемене фазы напряжения питания на 180°);

частотный сигнал переменного тока {наиболее широко применяется сигнал с диапазоном частот 4—8 кГц);

пневматический сигнал с переделами изменения давле­ния 0,02—0,1 МПа.

 На металлургических предприятиях в основном приме­няется аппаратура, использующая электрические сигналы.

Средство измерения, с помощью которого измеритель­ная информация выдается в форме, доступной для непосред­ственного восприятия наблюдателем, называется измерительным прибором. В практике для измерительных приборов, устанавливаемых на щитах контроля и управления, применяется термин вторичный прибор т. е. устройство, вос­принимающее сигнал от первичного или передающего изме­рительного преобразователя и выражающее его в воспринимаемом виде с помощью отсчетного устройства (шквалы, диаграммы, интегратора, сигнального устройства).

К первичным преобразователям также относят и отбор­ные устройства. Отборным устройством (отбором) называ­ют устройство, устанавливаемое на трубопроводах и техно­логических агрегатах и служащее для непрерывного или периодического отбора контролируемой среды и передачи" ее параметров к измерительному преобразователю или из­мерительному прибору. В отличие от первичного измери­тельного преобразователя отборное устройство передает к измерительному прибору или преобразователю измеряе­мую величину, не изменяя ее физической природы (напри­мер, отбор давления среды в технологическом аппарате и передача его по импульсной трубке для измерения к ма­нометру). Импульсной трубкой называют трубопровод не­большого диаметра обычно от 1/2 до 2 связывающий технологический объект с преобразователем или измерительным прибором.

Место установки отборных устройств и первичных изме­рительных преобразователей, может сильно влиять на точ­ность измерения, поэтому технологам с особым вниманием необходимо относиться к выбору мест установки датчиков, отборов давления, разрежения и проб на химический ана­лиз.

Отборные устройства располагаются на границе сопри­косновения технологического оборудования и технологиче­ских трубопроводов с измерительной системой. Для монтажа отборных устройств используются специальные закладные конструкции — устройства, встраиваемые в технологическое оборудование и трубопроводы и обеспечи­вающие:

а) установку на них первичных измерительных преоб­разователей и местных измерительных приборов таким образом, чтобы чувствительный элемент преобразователя или прибора находился в зоне измерения технологическо­го параметра, например, показывающего ртутного термо­метра или термоэлектрического термометра (термопары) (см. рис. 4, а, б);

б) присоединение импульсного трубопровода и закреп­ление запорного устройства, если первичный измерительный преобразователь или местный измерительный прибор уста­навливается на некотором расстоянии от технологического аппарата или трубопроводов, например, манометра бесшкального с дистанционной передачей показаний, манометра местного показывающего (см. рис. 4,в,г).

Совокупность средств измерений и вспомогательных 1 устройств, соединенных между собой каналами связи, предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки передачи и (или) использования в автоматических системах управления, называется измерительной системой.

К вспомогательным устройствам измерительной систе­мы относятся устройства, предназначенные для питания энергией средств измерения, защиты их от внешних воздей­ствий, внутренних перегрузок и т. д.

В зависимости от назначения и поставленных задач из­мерительная система может включать в себя один или несколько измерительных преобразователей и измерительных приборов.

Под определением системы автоматизации следует по­нимать совокупность приборов и средств автоматизации (измерительной, преобразующей, передающей, исполнитель-

Рис.4. Примеры установки первичных измерительных преобразователей для из­мерения температуры и отборных устройств для измерения давления газа:

а—установка стеклянного показывающего термометра ртутного углового в за­щитной оправе на трубопроводе; б — установка термометра термоэлектрического (термопары) на трубопроводе или металлической стенке с внутренней кирпичной кладкой; в—установка отборного устройства для измерения давления газа; г— закладная конструкция отборного устройства для измерения давления газа; 1— термометр показывающий ртутный стеклянный угловой; 2 — термометр термо­электрический (термопара); 3— импульсная трубка; 4— вентиль; 5—прокладка; 6—заглушка; 7—штуцер; 8—закладная конструкция (перед установкой преоб­разователей, измерительных приборов; присоединением импульсной линии или запорного органа пробки-заглушки и прокладки с закладных конструкций сни­мают); 9—легкоснимаемый изоляционный слой.

ной и другой аппаратуры, а также вычислительной техни­ки), связанных между собой каналами связи в единые системы. Например, измерительные системы, системы авто-матического управления (регулирования), системы сигнализации, защиты и управления технологическим про­цессом.

В показывающих приборах измерительная информация воспроизводится положением стрелки или какого-либо другого указатели относительно отметок шкалы прибора. Шкала представляет собой совокупность отметок, расположен­ных вдоль какой-либо линии, и проставленных около некоторых из них чисел отсчета или других символов, соответствующих ряду последовательных значений измеряемой величины.

Для каждого измерительного прибора устанавливается диапазон показаний - область значений шкалы, ограниченная начальным и конечным ее значением.

Любые технические измерения относительны, посколь­ку всегда существует положительная или отрицательная разность между наблюдаемым или численным значением измеряемой величины и ее истинным значением, называемая погрешностью. Таким образом, погрешность — это от­клонение результата измерения от истинного значения из­меряемой величины.

Погрешности измерения в зависимости от их происхож­дения разделяются на три группы: систематические погреш­ности, случайные погрешности и субъективные погрешно­сти (промахи).

Систематические погрешности имеют постоянный харак­тер и по причинам возникновения делятся на: инструмен­тальные погрешности; погрешности от неправильной установки средств измерений; погрешности, возникающие вследствие внешних влияний; методические (теоретические) погрешности.

Инструментальные погрешности могут вызываться кон­структивными и технологическими погрешностями, а также износом и старением средств измерений.

Конструктивные погрешности вызываются несовершен­ством конструкции или неправильной технологией изготов­ления средства измерения. Плохая балансировка измери­тельного механизма, неточности при нанесении отметок шкалы, некачественная сборка прибора вызывают технологическую погрешность. Конструктивная погрешность у приборов одного типа постоянна, технологическая же погреш­ность меняется от экземпляра к экземпляру.

Длительная или неправильная эксплуатация прибора, а также длительное хранение приводят к погрешностям, которые называют погрешностями износа и Старения.

Погрешности от неправильной установки могут вызы­ваться наклоном прибора, т. е. отклонением от нормального рабочего положения; установкой на ферромагнитный щит прибора, градуированного без щита; близким расположе­нием друг к другу однотипных приборов.

Погрешности, возникающие вследствие внешних влия­нии. вызываются вибрацией, электромагнитными полями, конвекцией нагретого воздуха и др.

Следует иметь в виду, что наиболее сильное воздействие на показания приборов оказывает изменение температуры окружающей среды. Даже незначительные перепады тем­пературы между отдельными элементами прибора приводят к заметным погрешностям вследствие, например, возникно­вения паразитных термо-э.д.с., или по другим причинам. Поэтому не рекомендуется устанавливать измерительные приборы вблизи источника тепла.

Методические погрешности возникают в результате не­совершенства метода измерений и теоретических допу­щений (использование приближенной зависимости вместо точной). К таким погрешностям относятся, например, по­грешности, обусловленные пренебрежением внутренним со­противлением (проводимостью) прибора, т. е. пренебреже­нием собственным потреблением электроэнергии.

Для исключения погрешности до начала измерений сле­дует определить причину, вызывающую погрешность, и уст­ранить ее. Например, если погрешность вызывается влиянием внешнего электромагнитного поля, то нужно либо экранировать прибор, либо удалить источник помехи. Для исключения температурной погрешности средство измере­ний термостатируют, вибрацию устраняют путем установки амортизаторов. В процессе измерения погрешность устраня­ется применением специальных методов измерения.

Исключение погрешности после проведения измерений достигается путем введения соответствующей поправки, в показания приборов, численно равной систематической погрешности, но противоположной ей по знаку.

В некоторых случаях применяют не поправку, а попра­вочный множитель — число, на которое нужно умножить результат измерения, чтобы исключить систематическую погрешность. Поправочные множители применяются для исключения систематической погрешности делителей на­пряжения, плеч отношения в мостах и т. п.

Случайные погрешности вызываются независящими друг от друга случайными факторами и изменяются слу­шанным образом при повторных измерениях одной и той же величины. Проявляются случайные погрешности в том. что при измерениях одной и той же неизменной величины одним и тем же средством измерения и с той же тщатель­ностью, получают различные показания. Следует отметить, что если при повторных измерениях одной и той же величины одним и тем же средством измерения получают совер­шенно одинаковые результаты, то это обычно указывает не на отсутствие случайной составляющей погрешности, а на недостаточную чувствительность средства измерения. Плот­ностью совпадающие, как и сильно разнящиеся результаты наблюдений при измерениях одинаково свидетельствуют о их неточности. Случайные погрешности могут возникнуть, например, из-за трения в опорах, люфтов в сочленениях ки­нематической схемы измерительного прибора, неправиль­ного режима работы электронных устройств и по многим другим, трудно объяснимым причинам. Знак случайных по­грешностей выражается в виде ±.

Субъективные погрешности (промахи)-это погрешно­сти, вызванные ошибками лица, производящего измерение например, неправильный отсчет по шкале прибора, невер­ное подключение проводов к датчику и др.).

Погрешности средств измерений устанавливаются при поверке—определении метрологическим органом погреш­ностей средств измерений и установления пригодности их к применению (применять сочетание слов «поверка показа­ний» не рекомендуется, следует говорить «поверка средств измерений»). Слово проверка применяется для установления комплектности чего-то, оценки состояния взаимодейст­вия элементов, например, электрической схемы.

Совокупность операций по доведению погрешностей средств измерений до значений, соответствующих техниче­ским требованиям, называется юстировкой средств измере­ний.. Зависимость между значениями величин на выходе и входе средства измерений, составленная в виде таблицы, графика или формулы, называется градуировочной харак­теристикой. Определение градуировочной характеристики называется градуировкой средств измерения (термин «та­рировка» применять не рекомендуется).

Различают абсолютные и относительные погрешности измерения.

Абсолютная погрешность D-это разность между измеренным Х и истинным  значениями измеряемой величи­ны. Абсолютная погрешность выражается в единицах из­меряемой величины

 (2)

Поскольку истинное значение измеряемой величины оп­ределить невозможно, вместо него в практике используют действительное значение измеряемой величины, которое находят экспериментально по показаниям образцовых средств измерений. Таким образом, абсолютную погреш­ность находят по формуле

(3)

Относительная погрешность - это отношение абсо­лютной погрешности измерения к истинному (действи­тельному) значению измеряемой величины, выраженное в процентах:

(4)

Пример I. Определить абсолютную и относительную погрешно­сти измерения давлении, если при действительном значении давления среды 70 кПа показание прибора равно 68,5 кПа.

Из выражения (3) находим абсолютную погрешность измерения:

D=68,5—70=-1.5кПа.

Согласно выражению (4) относительная погрешность

Абсолютная погрешность измерительного прибора — это разность между показанием  прибора и истинным значе­нием измеряемой величины. Поскольку, как указывалось выше, истинное значение величины остается неизвестным, на практике вместо него пользуются действительным зна­чением величины , отсчитанное по образцовому прибору. Таким образом

(5)

Поправкой называют величину, одноименную с измеря­емой, которую следует алгебраически прибавить к показа­ниям прибора, чтобы получить действительное значение. Поправка равна абсолютной погрешности измерения, взя­той с обратным знаком.

Относительная погрешность измерительного прибора -это отношение абсолютной погрешности измерительного прибора к действительному значению измеряемой им величины. На практике, как правило, относительную по­грешность выражают в процентах:

   (6)

Приведенная погрешность измерительного прибора -это отношение абсолютной погрешности измерительного прибора к нормирующему значению (обычно выражается в процентах):

  (7)

Нормирующее значение-условно принятое значение, которое может быть равным верхнему пределу измере­ний, диапазону измерений, длине шкалы и др. Как правило, за нормирующее значение принимаются: конечное значение диапазона измерений (для приборов, имеющих нулевую отметку на краю шкалы); арифметическая сумма конечных значении диапазона измерений [для приборов, имеющих двустороннюю шкалу (нулевая отметка в середине шкалы). Например, для термометра со шкалой от минус 50 до плюс 50 °С величина будет определяться суммой 50+50=100]; разность конечного и начального значений диапа­зона измерений для приборов со шкалами без нуля (так называемые шкалы-с «подавленным нулем»). Например, для потенциометра со шкалой 300—1600°С величина  будет определяться разностью 1600—300 ==1300.

Необходимо отметить, что приведенная погрешность ха­рактеризует лишь метрологические свойства самого прибо­ра, а не погрешность измерений, полученных с помощью этого прибора, которые могут выражаться только в виде абсолютной погрешности. Абсолютная и относительная по­грешности в соответствии с выражениями (5), (6) и (7) связаны с приведенной следующими соотношениями:

(8)

 (9)

Как видно из уравнения (9) относительная погреш­ность практически всегда больше приведенной (кроме случая, когда измеряемая величина больше, например, верхнего предела измерения, т.е..> ). Причем, чем меньше значение измеряемой величины , тем больше от­носительная погрешность. Поэтому измерительные прибо­ры рекомендуется выбирать таким образом, чтобы при из­мерениях указатель находился во второй половине шкалы, а также подбирать предел измерения образцового прибора таким образом, чтобы он превышал предел измерения по­веряемого прибора не более чем на 25 %.

На показания приборов оказывают значительное влия­ние внешние факторы, называемые влияющими величинами.

Область значений влияющей величины, устанавливаемая в стандартах или технических условиях на средства измерения данного вида в качестве нормальной для этих средств измерений, называется нормальной областью значений. При нормальном значений влияющей величины погрешность средств измерения минимальна. Условия применения средств измерений, при которых влияющие величины (тем­пература и влажность окружающего воздуха, характер вибрации, напряжение питания, величина внешнего маг­нитного и электрического поля и т.д.) находятся в преде­лах нормальной области значений, называются нормаль­ными условиями применения средств измерений. Нормаль­ные условия оговариваются в технических условиях заводов-изготовителей средств измерений.

Погрешность средств измерений, используемых в нор­мальных условиях, называется основной погрешностью. Изменение погрешности средств измерений, вызванное от­клонением одной из влияющих величин от нормального значения, называется дополнительной погрешностью.

В зависимости от основной и дополнительной погрешно­сти средствам измерений присваиваются соответствующие классы точности.

Класс точности - обобщенная характеристика средства измерения, определяемая пределами допускаемых основной и дополнительной погрешностей, а также другими свойст­вами средства измерения, влияющими на точность, значе­ния которых устанавливаются в стандартах на отдельные виды средств измерений.

Средства измерений выпускаются на следующие клас­сы точности: 0,01; 0,015; 0,02; 0,025; 0,04; 0,05; 0.1; 0,15; 0,2; 0,25; 0,4; 0,5; 0,6; 1,0; 1,5; 2,0; 2,5; 4,0; 5,0; 6,0. Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств (под точностью средств измерений понимается качество измерений, отражающее близость к нулю его по­грешностей). На циферблаты, щитки, корпуса средств, из­мерений наносят условные обозначения класса точности, включающие числа и прописные буквы латинского алфа­вита.

Пределом допускаемой погрешности средства измерений называется наибольшая (без учета знака) погрешность средства измерений, при которой оно может быть признано годным и допущено к применению. Предел допускаемой основной погрешности может выражаться одним из трех способов в форме абсолютной погрешности, относительной погрешности и приведенной погрешности.

Для средств измерений, у которых нормируются абсо­лютные погрешности, класс точности обозначается пропис­ными буквами латинского алфавита или римскими цифра­ми. В определенных случаях добавляются индекс в виде арабской цифры. Такое обозначение класса точности не связано с пределом допускаемой погрешности, т.е. носит условный характер.

Для средств измерений, у которых нормируется приве­денная или относительная погрешность, класс точности обо­значается числами и существует связь между обозначением класса точности и конкретным значением предела допуска­емой погрешности.

При выражении предела допускаемой основной погреш­ности в форме приведенной погрешности класс точности обозначается числами, которые равны этому пределу, вы­раженному в процентах. При этом обозначение класса точ­ности зависит от способа выбора нормирующего значения. Если нормирующее значение выражается в единицах изме­ряемой величины, то класс точности обозначается числом, совпадающим с приведенной погрешностью. Например, если v=1,5%, то класс точности обозначается 1,5 (без кружка). Если нормирующее значение принято равным дли­не шкалы или ее части, то обозначение класса точности (пpи v==l,5 %) будет иметь вид 1,5 (в кружке).

При выражении предела допускаемой основной погреш­ности в форме относительной погрешности необходимо ру­ководствоваться следующим.

Предел допускаемой относительной погрешности со­гласно выражению (6)

(10)

где— предел допускаемой абсолютной погрешности;

Х — измеренное значение.

В том случае, когда предел относительной погрешности остается постоянным во всем диапазоне измерений выра­жение (10) имеет вид:

(11)

где с – постоянное число.

Если же предел относительной погрешности изменяется, то

 (12)

где с и d—постоянные числа, причем с—численно равно относительной погрешности на верхнем пределе измерения, a d—численно равно погрешности на нижнем пределе из­мерения, выраженной в процентах от верхнего предела;

—конечное значение диапазона измерений.

В первом случае число, обозначающее класс точности и предел допустимой основной погрешности, выраженной в процентах, совпадают. Это число заключается в кружок.

Во втором случае в обозначение точности входят два числа, которые разделяются косой чертой (первое с, второе d). Например, 0,02/0,01, без кружка.

Погрешности ряда средств электрических измерений нормируются по двухчленной формуле вида:

 (13)

где е и f—постоянные числа ( е=с-d; f=d)

В этом случае в условное обозначение класса точности входит только число е, которое заключают в кружок. Таким образом, обозначение класса точности не отличается от слу­чая с постоянной относительной погрешностью.

Пример 2. Основная погрешность потенциометра постоянного тока в диапазоне 0—50 мВ нормируется по формуле

где—показания потенциометра, мВ.

Условное обозначение класса точности —0,05 (в кружке). Предел допускаемой погрешности: в конце диапазона измерения для этого прибора

в середине диапазона

 

Таким образом, фактическая относительная погреш­ность потенциометра значительно превышает число, указан­ное в условном обозначении класса точности. Поэтому при проверке приборов, погрешности которых нормированы по Двухчленным формулам, следует во избежание ошибок особенно внимательно относиться к анализу погрешности об­разцовых и рабочих средств измерений. Примеры обозна­чений класса точности средств измерений представлены в табл. 1.

Применяются и другие обозначения класса точности. В эксплуатационной документации на средства изме­рений указываются государственные или отраслевые стан­дарты, в соответствии с которыми установлен класс точ­ности.

По классу точности прибора можно определить его до­пустимые погрешности и

Для приборов с нулем в начале шкалы абсолютная ос­новная погрешность

(14)

где К—класс точности прибора; —нормирующее зна­чение, равное верхнему пределу показаний прибора.

Тогда, согласно выражению (7), приведенная основная погрешность прибора

(15)

Для приборов, имеющих шкалу «с подавленным нулем», необходимо дополнительно учитывать погрешность показа­ний на начальной отметке шкалы. Для таких приборов аб­солютная основная погрешность

(16)

где Е—диапазон шкалы прибора; Д—диапазон «подавле­ния» (нижний предел измерения); d—значение поправки на «подавление нуля» (для приборов классов 0,5 и 1,0 d=±0,15; для класса 1,5- d=± 0,25).

Заменяя в выражении (7) на Е, получим, что для приборов с «подавленным нулем» приведенная основная по­грешность определяется следующим образом;

(17)

или

(18)

Таким образом, для этого типа приборов численное зна­чение приведенной основной погрешности будет превышать число, указанное в условном обозначении класса точности на величину dД/Е.

Пример 3. Определить погрешность потенциометра типа КСП3-П класса точности 1,5 для измерения температуры, имеющего шкалу +300¸1600 °С. По (16) находим, что абсолютная основная по­грешность на всех точках шкалы не должна превышать значения

Приведенная основная погрешность согласно выражению (17)

или по формуле (18)

Пример 4. Определить погрешность вторичного прибора типа КСДЗ класса точности 1,0 для измерения расхода со шкалой 0—400. Согласно (14) определяем абсолютную основную погрешность:

.

Приведенная погрешность по формуле (15)  =±K=±l,0 %.

Вариацией показаний прибора называется разность между значениями отдельных показаний прибора, соответствующих одному и тому же значению измеряемой величи­ны, полученных при приближении к нему как от меньших значении к большим, так и от больших к меньшим. Вариация показаний определяется одновременно с основной по­грешностью как разность действительных значений изме­ряемой величины (по показаниям образцового прибора), соответствующих одной и той же отметке шкалы поверяе­мого прибора сначала при увеличении (прямое направле­ние), а затем при уменьшении (обратное направление) значения измеряемой величины. При нескольких подходах к данной точке диапазона измерений в каждом из двух на­правлениях вариация определяется как средняя разность.

Вариация обычно выражается в процентах от принятого нормирующего значения   где - значения измеряемой величины при прямом и обратном на­правлениях подхода к данной точке измерения; —нор­мирующее значение,

Вариация показаний вызывается появлением трения в опорах, люфтами, износом кернов, подпятников и др.

Вариация показаний не должна превышать 0,2 % для приборов класса точности 0,25 и выше и половины допустимого значения основной погрешности для приборов осталь­ных классов точности.

Измерительные приборы характеризуются также и чув­ствительностью, под которой понимается отношение изме­нения сигнала на выходе измерительного прибора к вызы­вающему его изменению измеряемой величины. Иногда чувствительностью называют величину перемещения ука­зателя прибора при изменении измеряемой

Таблица 1. Примеры обозначения класса точности средств измерений.

Форма выражения погрешности Предел допускаемой основной погреш­ности (форма представления)

Предел допускаемой основной погрешности, %

 

Обозначение класса точности

 

в докумен­тации На средствах измерения
Приведенная По формуле (7), если нормирующее значение определя­ется в единицах измеряемой вели­чины ±1.0 Класс точ­ности 1.0 1.0
То же, если нор­мирующее значе­ние определяется длиной шкалы или ее пасти ±0,25 Класс точ­ности 0,25 0,25
Относительная По формуле (11) ±0,2 Класс точности 0,2 0,2 (в кружке)
По формуле (12) Класс точности 0,02/0,01 0,02/0,01
Абсолютная

По формуле Dg =±а или Dg =±(а+bХ), где Dg — предел до­пускаемой абсо­лютной основной погрешности; Х — значение измеряе­мой величины; а и b — положитель­ные числа, не за­висящие от Х.

__ Класс точ­ности М М

величины на единицу (например, 2 мм/град или 1° дуги/град). Чувстви­тельность не связана с величиной погрешности прибора. Иногда высокочувствительные приборы могут иметь боль­шую погрешность, а прибор с малой чувствительностью— высокую точность измерений.

Если класс точности собственно измерительного прибо­ра известен по его документации, то класс точности изме­рительной системы в целом, включая первичный измери­тельный преобразователь и канал связи, не может норми­роваться заранее, так как зависит от конкретных условий эксплуатации.

Согласно теории вероятностей можно считать, что с ве­роятностью, близкой к 100%, одновременное воздействие нескольких знакопеременных факторов (X, Y, Z, U...) дает суммарную погрешность:

  (19)

где —погрешности X, Y, Z, U, выраженные в процентах.

Вычисленная таким образом погрешность получила на­звание средней квадратичной погрешности.

Обозначив погрешности различных элементов, входя­щих в измерительную систему через , где i=1,2…,n в со­ответствии с (19) получим:

  (20)

Пример 5. Определить суммарную погрешность измерительной системы, состоящей из термометра термоэлектрического (термопары) ТХА-0806; преобразователя измерительного НП-ТЛ1-11, преобразовывающего термо-э. д. с. термопары в унифицированный сигнал постоянно­го тока 0-5 мА, и вторичного показывающего прибора с токовым входом типа КСУЗ, шкалой 0—900С, и предназначенной для измерения температуры в печи для термообработки металла, отапливаемой газом.


Глава 2. Технологические измерения и приборы в прокатном производстве.

2.1 ВВЕДЕНИЕ

При контроле и исследовании технологического процесса выводы об условиях работы оборудования и о характере отклонений в протекании процесса делаются на основании анализа величин, полученных при измерении технологических параметров. Под измерением обычно понимают познавательный процесс, заключающийся в экспериментальном определении численного соотношения между измеряемой физической величиной и значением, принятым за единицу измерения.

С точки зрения общих приемов получения результатов измерения их можно разделить на прямые, косвенные и совокупные.

К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. При этом значения искомой величины получаются либо непосредственным сравнением ее с мерами, либо посредством измерительных приборов, градуированных в соответствующих единицах, например измерение длины при помощи метра, температуры при помощи термометра, давления металла на валки при помощи месдозы и т. п.

К косвенным измерениям относятся такие измерения, результат которых получается на основании опытных данных прямых измерений нескольких величин, связанных с искомой величиной определенным уравнением. Известно, например, что толщина горячекатаного листа определяется зазором между валками в ненагруженном состоянии и величиной упругой деформации системы клеть—_валки. Величина упругой деформации системы клеть – валки в свою очередь является функцией давления металла на валки. Поэтому, если каким-либо способом измерять толщину листа после каждого прохода, то при известней величине зазора между валками в нагруженном состоянии по установленным функциональным связям можно найти давление металла на валки.

Следует отметить что в ряде случаев косвенным измерением можно получить более точный результат, чем при прямом измерении.

К совокупным измерениям относятся измерения, состоящие из совокупности (ряда) прямых измерений одной или нескольких однородных величин. При этом одно измерение отличается от другого тем, что меняются либо условия измерения, либо сочетания измеряемых величин. Совокупные измерения производят, например, при градуировке различных датчиков.

Качество приборов, с помощью которых осуществляются измерения, зависит от ряда присущих им свойств, определяющих степень доверия к полученным при их помощи результатам измерения. Основными свойствами прибора следует считать точность, чувствительность, постоянство.

Разность между показанием прибора и действительным значением измеряемой величины называется погрешностью показаний прибора, которая характеризует его точность. Однако сама по себе абсолютная погрешность не дает представления о качестве измерительного прибора. Поэтому практически большее значение имеют относительные погрешности: отношение абсолютной погрешности к значению измеряемой величины (действительному или по показанию прибора).

Наибольшая погрешность показания прибора, допустимая нормами, называется допустимой погрешностью, характеризуемой числовым значением и поставленными перед ним знаками ± или одним из этих знаков.

Под чувствительностью измерительного прибора .понимают отношение линейного или углового перемещения указателя прибора к единице измеряемой величины.

Под постоянством измерительного прибора понимают степень устойчивости показаний прибора при одних и тех же внешних условиях его работы. Постоянство характеризуется вариацией прибора. Это наибольшая (получаемая экспериментально) разность между повторными показаниями измерительного прибора, соответствующими одному и тому же действительному значению измеряемой величины при неизменных внешних условиях.

В зависимости от выбранного метода измерений, а следовательно, и от выбранного типа измерительного прибора в процессе самого измерения технологических параметров возникают погрешности, которые по их происхождению разделяют на случайные; систематические инструментальные или приборные; систематические или случайные методические; динамические.

Случайные погрешности измерений технологических параметров обусловлены рядом причин. Прежде всего к. ним следует отнести изменения показаний используемого измерительного прибора, неточность отсчета его показаний, погрешность его проверки, неучитываемые влияния внешних факторов на показания прибора.

К категории случайных погрешностей относятся неучтенные систематические погрешности, обусловленные невозможностью их строгого учета.

Под инструментальной, или приборной понимают погрешность измерений технологических параметров с помощью данного прибора или установки, определяемую измерительными качествами прибора.

В том случае, если условия применения прибора отличаются от условий при проверке (например, переход от горизонтального в наклонное положение, повышенная температура корпуса, наличие вибраций т.п.), то возникающие вследствие этого дополнительные погрешности измерений также относятся к категории инструментальных погрешностей.

Следует отметить, что инструментальная погрешность, определяемая свойствами прибора в нормальных условиях его применения, называется основной погрешностью.

Методические погрешности представляют собой совокупность таких погрешностей, которые определяются условиями измерений технологических параметров на данном объекте, условиями применения данного прибора и не зависят от свойств и характеристик измерительного прибора. Например, при контактном методе измерения температуры нарушается температурное поле объекта в процессе измерения, и возникающая при этом дополнительная погрешность определяется главным образом условиями теплообмена датчика (термоприёмника) и объекта исследования.

Оценка величины методической погрешности позволяет правильно организовать измерительный процесс и осуществить рациональный выбор используемого измерительного прибора. Часто при недостаточно продуманной организации измерительного процесса величина методической погрешности измерений во много раз превышает величину инструментальной погрешности прибора. Очевидно, при значительной методической погрешности измерений бессмысленно применять приборы высокой точности. Рациональным, по-видимому, является такой выбор измерительного прибора, при котором его инструментальная погрешность была соизмерима с величиной методической погрешности измерений.

В условиях измерения меняющихся технологических параметров результаты измерения оказываются искажёнными; помимо инструментальной и методической погрешностей, возникает погрешность только в динамическом режиме, получившая поэтому название динамической.

Под динамической погрешностью понимают разность мгновенных значений показаний прибора и измеряемой величины, меняющейся во времени. Причина возникновения динамической погрешности – инерция датчиков преобразователей, а также наличие инерциональных и демпфирующих сил в механизме измерительного прибора.

Величина динамической погрешности , возникающей в процессе измерения, определяется не только свойствами самого прибора, но и характером изменения измеряемой величины. При криволинейном характере изменения измеряемого технологического параметра величина динамической погрешности измерений оказывается меняющейся со временем.

Более подробные сведения о свойствах случайных и других погрешностей измерений, а также о выборе методов и измерительных прибопров можно найти в специальной литературе.

2.2 ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ДЛИНЫ И СКОРОСТИ ПРОКАТЫВАЕМОГО МЕТАЛЛА

Приборы для измерения длины проката условно можно классифицировать но трем основным признакам:

1)   но направлению измерения относительно движения изделия;

2)    по виду преобразователя, устанавливаемого на линии движения проката;

3)    но наличию или отсутствию контакта измерителя с измеряемым изделием.

В зависимости от направления измерения относительно оси движения изделия различают два случая, когда изделие перемещается либо перпендикулярно оси измерения, либо параллельно.

Измерение в первом случае (обычно в поперечном потоке перед сортировкой продукции по длине) производится с помощью пневматического досылателя изделий до упора по пути, пройденному головкой толкателя. Данные поступают в запоминающее устройство, которое и управляет механизмом сортировки. Небольшая скорость измерения ограничивает применение данного способа в случае больших скоростей прокатки. В связи с этим большинство измерителей длины проката разработано для работы в продольном потоке.

В зависимости от вида преобразователя, устанавливаемого на линии движения проката, измерители длины можно разбить на два больших класса: электромеханические измерители длины (контактные) и фотоимпульсные измерители длины (бесконтактные). Кроме того, к бесконтактным измерителям длины относятся приборы с магнитными и тепловыми метками, а также приборы, основанные на эффекте Доплера.

2.2.1. ЭЛЕКТРОМЕХАНИЧЕСКИЕ ИЗМЕРИТЕЛИ ДЛИНЫ

Принцип работы электромеханических измерителей длины заключается в следующем: мерительный цилиндрический ролик, вращаемый на оси, прижимается к изделию и обкатывает его при поступательном движении. С роликом жестко связан импульсатор, который выдаст определенное число импульсов на один оборот ролика. Цена импульса может быть определена по следующей формуле:

где D – диаметр мерительного ролика;

n — число импульсов на один оборот импульсатора;

 —передаточное отношение между роликом и импульсатором.

Подсчитав число импульсов т, можно определить длину изделия L:

В данной системе возможно проскальзывание ролика по изделию. Чтобы избежать этого, применяют магнитные ролики или специальные прижимы.

В качестве мерительного ролика могут быть также использованы подающие ролики или валки прокатной клети. В последнем случае для определения цены импульса необходимо учитывать опережение металла. В процессе работы мерительный ролик изнашивается. При этом изменяется цена импульса:

Поскольку относительное изменение диаметра ролика уменьшается с увеличением последнего, то для уменьшения ошибки измерения ролик при прочих равных условиях делают большего диаметра. Кроме того, для уменьшения износа ролика в конструкции ролика предусмотрена сменная рубашка из легированной стали, например ШХ15

В качестве импульсаторов применяют сельсины, высокочастотные генераторы, а также фотоэлектрические, электромеханические, электромагнитные и другие устройства

При выборе импульсатора важна стабильность импульса во время работы изммерительного ролика. Кроме того, надо учитывать, что увеличение числа импульсов на один оборот измерительного ролика уменьшает цену импульса, т.е. увеличивает точность измерения

Несмотря на все принимаемые меры, полностью избежать проскальзывание между роликом и изделием не удается, особенно в переходных режимах. Ошибка измерения в этом случае зависит от длины изделия и может достигать величин, не удовлетворяющих требованиям производства. В связи с этим схему измерительной установки строят так, что производят измерение с помощью мерительного ролика не всего изделия, а только части, равной превышению длины изделия над так называемым «базовым расстоянием» . Длину базового расстояния принимают обычно равной минимально возможной длине изделия. Точность измерения в этом случае значительно повышается.

При использовании для измерения длины сортового металла в качестве мерительных роликов валков прокатных станов нужно учитывать непостоянство катающего диаметра, а при использовании подающих роликов - возможность возникновения пробуксовки в переходных режимах, что приводит к изменению цены импульса. В этом случае наряду с базовой длиной вводится еще контрольная длина, на которой происходит уточнение значений длины, соответствующей одному импульсу (калибровка импульсов). Базовая и контрольная длины в ряде случаев могут быть совмещены. Схема устройства базовой и контрольной длиной приведена на рис.120.

В качестве мерительных роликов используются валки 3 прокатного стана, с одним из которых соединен фотоэлектрический импульсатор 1, состоящий из диска 20 с равномерно нанесенными по окружности отверстиями, 21, осветителей 22 и фотоэлементов 23 и 24. Число отверстий, нанесенных на одной дорожке, отличается на единицу от числа отверстий, нанесенных на каждой соседней дорожке. Базовая длина размещена между фотоэлементами 7 и 9. При прокатке диск импульсатора 20 получает вращение и на его выходе появляются импульсы, поступающие через усилитель 17 на счетчик 5.

Однако за время прохождения передним концом изделия базового состояния  импульсы, выдаваемые импульсатором, не учитываются счетчиком 5, так как

ключ 13 в этот период заперт. При появлении изделия в поле действия фотоэлемента 9 открывается ключ 13 и импульсы поступают в счетчик 5. Счет импульсов заканчивается при прохождении задним концом изделия фотоэлемента 7—в этот момент ключ 13 запирается.

Таким образом, счётчик 5 считает импульсы на длине изделия, превышающей базовую длину. Если предварительно в счетчике 5 установить базовую длину, то он будет показывать полную длину изделия.

Так как катающий диаметр валков при прокатке различных профилей может изменяться, то меняется и цена одного импульса. Поэтому перед счетом импульсов счетчиком 5 необходимо уточнить цену одного импульса или

изменить число импульсов импульсатора 20 за один оборот диска так, чтобы цена одного импульса осталась без изменения.

В рассматриваемой схеме используется последний вариант. Для этого в схему вводится контрольная длина, ограничиваемая фотоэлементами 8 и 9. При достижении изделием фотоэлемента 8 импульсы с крайней дорожки диска импульсатора через усилитель 18 попадают на счетчик импульсов контрольной длины 4. Счет этих импульсов прекращается, когда передний конец изделия достигает фотоэлемента 9. В зависимости от числа импульсов в счетчике контрольной длины 4 при помощи устройства 16 выбирают одну из дорожек на диске импульсатора таким образом, чтобы цена импульса осталась без изменения. В дальнейшем импульсы в счетчик 5 попадают именно с этой дорожки импульсатора.

Электромеханические измерители длины применяют для измерения длины горячекатаных труб, а также среднего и крупного сорта проката. При этом ошибка в измерении длины составляет не более ±1,0%.

2.2.2 ФОТОИМПУЛЬНЫЕ ИЗМЕРИТЕЛИ ДЛИНЫ

Фотоимпульсные измерители длины в зависимости от получаемой информации с фотодатчиков можно разбить на три группы:

1)   приборы, в которых длину изделия измеряют по времени прохождения изделием какого-либо датчика с учетом средней скорости движения за это время;

2)   с прямым счетом импульсов;

3)   с применением развертывающих систем.

Принципиальная схема измерителей первой группы приведена на рис. 121.

На линии движения изделия устанавливают два фотодатчика 1 и 2 на базовом расстоянии  друг от друга, равном минимально возможному размеру изделия. Длина изделия равна  Отрезок  подлежит измерению. Если скорость изделия и постоянна, то , где  время прохождения изделием от момента пересечения передним концом датчика 2 до момента пересечения задним концом датчика 1. В этом случае время  может служить мерой отрезка изделия .

.

Практически использовать эту схему можно лишь в том случае, когда не только скорость перемещения данного изделия по время измерения постоянна, но также постоянна скорость  и для всех изделий, что встречается сравнительно редко. В тех случаях, когда скорость от одного изделия к другому может меняться, необходимо измерять скорость  для каждого изделия. Схема такой установки приведена на рис. 121,6. В этом случае на линии проката устанавливают еще один датчик 3 на расстоянии  по ходу движения от датчика 1. По-прежнему принимается, что скорость изделия во время измерения остаётся постоянной, однако от изделия к изделию скорость может меняться. Скорость изделия определяется из соотношения  где —время прохождения задним концом изделия расстояния . Тогда

Замерив интервалы времени  и  и разделив их один на другой, можно найти искомую длину - Таким образом, при использовании данного метода главной задачей прибора является деление друг на друга временных интервалов.

Деление временных интервалов можно произвести при помощи электронно-вычислительных машин или электрических схем с конденсаторами. Применение электронно-вычислительных машин рекомендуется, если требуется очень высокая точность или операцию деления можно передать счетно-решающему устройству, обслуживающему стан по ряду операций. В других случаях целесообразнее применять метод, использующий схемы с конденсаторами, сущность которого заключается в следующем. При делении интервал времени  преобразуется в пропорциональное напряжение , где

 - коэффициент пропорциональности. Гиперболическая функция времени  аппроксимируется выражением

где А, N, - постоянные величины, которые выбирают из условия наилучшей аппроксимации. Тогда

Это выражение можно реализовать с помощью схемы, представленной на рис. 122. Два последовательно соединенных конденсатора  и , отношение емкостей которых равно заряжаются постоянным током  в течение времени  до суммарного напряжения . Напряжение на конденсаторе  будет равно , а на . Во время зарядки конденсаторов ключ K разомкнут. По окончании заряда ключ К замыкается на время  . Конденсатор  разряжается по экспоненциальному закону на сопротивление R. с постоянной времени . Через время  напряжение на конденсаторе будет равно

а суммарное напряжение на обоих конденсаторах

при этом величина  пропорциональна  На рис. 123 показана блок-схема прибора для измерения длины проката, использующая для деления временных интервалов вышеописанный метод. Основные узлы прибора: линейный интегратор, представляющий собой стабилизатор тока с последовательно включенными емкостями, и разрядное устройство. При помощи интегратора время  , преобразуется в напряжение , а при

помощи разрядного устройства реализуется уравнение (187).

Схема работает следующим образом. При прохождении передним концом трубы фотодатчика 2 возникает импульс, который поступает на ключ 5 и открывает интегратор 6. Через время  задний конец трубы выйдет из поля зрения фотодатчика 1 и возникший при этом импульс поступит на ключ 5 и интегратор закроется. Одновременно ключ 4 откроет разрядное устройство 7. Когда через время  задний конец трубы выйдет из поля зрения фотодатчика 3, возникший импульс закроет разрядное устройство. Напряжение , которое останется к этому моменту на емкостях интегратора, будет пропорционально . После окончания разряда открывается ключ 8 и напряжение . передается в выходное устройство 9. Данный метод измерения используется, например, для измерения длины горячих труб в пределах 7—8 м на станах печной сварки. Скорость передвижения труб: 3—8 м/с. Ошибка измерения при этом не более мм.

2.2.3 Фотоимпульсные измерители длины с прямым счетом импульсов.

Указанные измерители характеризуются тем, что датчики, установленные на линии продольного движения проката, при прохождении мимо них измеряемого изделия выдают в измерительную систему импульсы, равные определенной фиксированной длине. Простейшая схема такого устройства показана на рис. 124,а. Передний конец изделия 10, выходя из валков, попадает в поле зрения первого фотодатчика, а за-

тем, продвигаясь вперед по рольгангу, изделие

Рис.124. Система для измерения длинны изделий по фотоимпульсному методу с прямым счётом импульсов:

а – система только с грубым отсчётом; б – система с грубым и точным отсчётами; 1-7 – фотодатчики грубого отсчёта;8 – счётчик; 9 – фотодатчики точного отсчёта; 10 – изделие.

последовательно проходит мимо фотодатчиков 2, 3 и т. д. Импульсы от фотодатчиков поступают в счетчик 8 и суммируются. Каждый импульс соответствует расстоянию L. Таким образом, длина изделия будет равна L (п—1), где п-—число засвеченных фотоэлементов. Счет импульсов прекращается, когда задний конец изделия выйдет из поля зрения фотодатчика 1. Точность измерения таким методом зависит от шага L установки фотодатчиков. Для увеличения точности измерения с одновременным снижением числа фотодатчиков схему измерения строят по принципу грубого и точного отсчётов. В этом случае в отличие- от предыдущего, где отсчет ведется одним концом изделия, а другой дает сигнал об окончании счета, отсчет ведется обоими концами изделия (рис. 124,6). Грубый отсчет ведется по переднему концу изделия, показаний конец изделия не выйдет из поля зрения фотодатчика 1. Точный отсчет изделия ведется по заднему концу изделия с момента выхода заднего конца из поля зрения фотодатчика 1 до момента засветки следующего фотодатчика грубого отсчета (на рис. 124,б это фотодатчик 7). Длина полосы при этом равна

 

где l—шаг установки фотодатчиков точного отсчета;

т — количество засвеченных датчиков точного отсчета.

К изделиям длины изделий с прямым счетом импульсов относятся и приборы с нанесением магнитных, тепловых, радиоактивных, люминесцентных и других меток. Каждая метка имеет определенную цену длины изделия. При прохождении мимо регистратора эти метки считаются измерительной схемой (рис. 125). При прохождении передним концом фотодатчика 1 подается команда на головку записывающего прибора 8 для нанесения метки в изделие. При дальнейшем движении метка проходит мимо приемника 4, который считает метки и дает команду прибору 3 на нанесение следующей метки.

Путь, пройденный прокатом, определяют по формуле

где п – число меток;

 - расстояние между записывающей головкой и приемником.

Точность прибора мало зависит от скорости изделия и в основном определяется расстоянием между записывающей головкой и приемником·такие измерители применяются в основном для измерения метража длинных и «бесконечных» полос при намотке их в рулон и для проволоки.

Фoтoимпyльcныe измерители с применением развертывающих систем. Позволяют определять не только поперечные, но и продольные размеры проката, принцип действия этих приборов подробно изложен в гл.· IX. здесь следует отметить, что для измерения длины прокатанных изделий применяют приборы с механическими и электрическими развертывающими системами. B механических развертывающих системах для развертки используют архимедову спираль, барабаны с целью в виде винтовой линии или по образующей, а также барабаны с линзами или зеркалами Из электрических развертывающих систем для измерения длины чаще всего применяют различные варианты телевизионных измерительных систем

 

Ha рис., 126 приведена схема прибора для измepeния длины проката с механической развертывающей системой. прибор предназначен для измерения длины проката на реверсивном стане, Ha специальном валу, расположенном вдоль прокатного изделия, устанавливают измерительные головки. число головок равно n+1 (п. – число нечетных проходов, при которых необходим контроль длины проката).·одну из головок 1 устанавливают стационарно непосредственно возле валков реверсивной клети, а другие — подвижные 4 и 5 — на расстоянии от первой, равном номинальному значению контролируемой длины раската. подвижные головки связаны с валом скользящими шпонками 6 и 7. B каждой измерительной головке вмонтирована оптическая система, состоящая из объектива 16 и собирательной линзы 14. объектив проектирует конец проката на щелевую диафрагму 15, которая «вырезает»·из вceгo Поля зрения объектива узкую полоску изображения конца полосы в направлении длины проката на фоне осветителя. осветитель находится внизу под изделием (на рисунке не показан). за диафрагмой расположен барабан с винтовыми прорезями, световой поток, пройдя через диафрагму и винтовую прорезь, собирается линзой 14 и попадает на фотоэлемент 13.

Щелевая диафрагма и винтовые прорези при непрерывном вращении барабанов создают развертку изображения конца полосы на фоне осветителя, причем за один оборот диска просмотр изображения происходит столько раз, сколько винтовых прорезей на барабане, длительность затемнения фотоэлемента за время одного просмотра конца ,полосы пропорциональна величине A для головки 1 и величине Б для головки 4. следовательно, напряжение, снимаемое с фотоэлементов, будет обратно пpoпopциoцaльнo длинaм A и Б. Oбa эти нaпpяжeния cyммиpyютcя· Пoлyчeннoe cyммapнoe нaпpяжeниe peгиcтpиpyeтcя втopичным пpибopoм, кoтopый гpaдyиpyeтcя в eдиницax длинны Пpи пoмoщи гoлoвoк 1 и 4 пpoиcxoдит зaмep длины пpoкaтa пpeдпocлeднeгo нeчeтнoгo пpoxoдa, a c пoмoiцыo гoлoвoк 7 и 5—пocлeднeгo прохода

Ha pиc, 127 пpивeдeнa блoк-cxeмa тeлeвизиoннoй cиcтeмы для диcтaнциoннoгo измepeния длин зaгoтoвoк. Teлeвизиoннaя пepeдaющaя кaмepa 3 noмeщeнa пpoтиuв двyx зepкaл 5, pacпoлoжeнных мeждy coбoй пoд пpямым yглoм. Гpaдyиpoвaннyю шкaлy 6 ycтaпaвливaют пapaллeльнo оптичecкoй ocи кaмepы. Oптичecкaя ocь кaмepы и шкaлa нaxoдятcя пapaллeлънo плocкocти, в кoтopoй вeдeтcя измерение. C пoмoщью зepкaл и cиcтeмы линз 4 дocтигaeтcя coвмeщeниe изoбpaжeния зaгoтoвки и шкaлы в плocкocти paзвepтки пepeдaющeй кaмepы, Cиcтeмa зepкaл мoжeт пpивoдитьcя вo вpaщeниe cepвoмexaнизмoм, кoтopый yпpaвляeтcя oт кoнтpoльнoro пpибopa из бyдки oпepaтopa пpoкaтнoгo cтaнa. Пpи пoвopoтe cиcтeмы зepкaл гpaдyиpoвкa шкaлы бyдeт cкoльзить вдoль изoбpaжeния зaгoтoвки, пpи этoм нaчaлo шкaлы мoжeт быть coвмeщeнo c oдним кoнцoм зaгoтoвки, тогдa пo втopoмy кoнцy мoжнo пpoизвecти oтcчeт длинны. C пoмoщью этoй cиcтeмы мoжнo измepять длинy зaгoтoвoк в пpeдeлax oт 3,65 дo 11 мс пoгpeшнocтью ±3 мм.


Глава 3. Электрические машины и электропривод автоматических устройств.


3.1 BPAЩAЮЩИECЯ TPAHCФOPMATOPЫ 3.1.1 Назначение и устройство вращающихся трансформаторов

Bpaщaющиecя (поворотные) трансформаторы (BT) предназначены для получения переменного напряжения, зависящего от угла поворота ротора. По назначению BT относятся к информационным электрическим машинам (см., §9.1) и применяются в системах автоматического регулирования в качестве измерительных элементов (датчиков угла) для измерения рассогласования между двумя вращающимися Осями. B вычислительных устройствах вращающиеся трансформаторы используют при решении различных математических задач, связанных с построением треугольников, преобразованием координат, сложением и разложением векторов и т.п. Вращающийся трансформатор конструктивно представляет электрическую Машину индукционного типа малой мощности. Наибольшее применение получили двухполюсные BT с двумя парами одинаковых взаимно перпендикулярных обмоток: обмотки  и  (C1 — C2 и C3 — C4) расположены на статоре; обмотки  и  (P1 — P2 и P3 — P4) — на роторе (рис, 11.1). Обмотка возбуждения (C1— C2) включается в сеть переменного тока, компенсационная обмотка C3 — C4 замыкается накоротко или на резистор. Обмотки на роторе называются вторичными: синусной P1—P2 и косинусной P3—P4, электрический контакт с обмотками ротора осуществляется с помощью контактных колец и щеток (аналогично контактным сельсинам) либо посредством спиральных пружин, если BT работает в режиме ограниченного угла поворота. B последнем случае yгoл пoвopoтa poтopa BT oгpaничивaeтcя мaкcимaльным yглoм зaкpyчивaния cпиpaльныx пpyжин.

Пpинцип paбoты вpaщaющиxcя тpaнcфopмaтopoв ocнoвaн нa взaимнoй индyктивнocти мeждy oбмoткaми cтaтopa и poтopa, кoтopaя измeняeтcя в oпpeдeлeннoй фyнкциoнaльнoй зaвиcимocти oт yглa пoвopoтa poтopa.·Элeктpoдвижyщиe cилы, нaвoдимыe пyльcиpyющим мaгнитным пoтoкoм вoзбyждeния в oбмoткax poтopa, cтpoгo cлeдyют этoй зaвиcимocти. Ecли BT иcпoльзyeтcя в кaчecтвe измepитeльнoгo элeмeнтa, тo пoвopoт poтopa ocyщecтвляeтcя пocpeдcтвoм peдyктopнoгo мexaнизмa выcoкoй тoчнocти, кoтopый либo вcтpaивaeтcя в кopпyc BT, либo мoнтиpyeтся отдельно от ВТ и соединяется с его валком. ecли BT пpeднaзнaчeн для paбoты в peжимe пoвopoтa poтopa в пpeдeлax oпpeдeлeннoгo yглa, тo в кaчecтвe oбмoтoк вoзбyждeния и кoмпeнcaциoннoй иcпoльзyютcя oбмoтки cтaтopa, a в кaчecтвe втopичныx — oбмoтки poтopa.

Ecли BT paбoтaeт в peжимe нeпpepывнoгo вpaщeния poтopa, тo oбычнo пpимeняют «oбpaтнoe» иcпoльзoвaниe oбмoтoк: oбмoтки poтopa иcпoльзyют в кaчecтвe oбмoтoк вoзбyждeнйя и кoмпeнcaциoннoй, a oбмoтки cтaтopa —в кaчecтвe втopичныx· Ecли кoмпeнcaциoннaя oбмoткa зaмыкaeтcя нaкopoткo, тo пpи «oбpaтнoм» иcпoльзoвaнии oбмoтoк нa poтope пpимeняют лишь двa кoнтaктныx кoльцa, чтo yпpoщaeт кoнcтpyкцию, пoвышaeт нaдeжнocть и тoчнocть BТ.

B зaвиcимocти oт гpaфикa фyнкциoнaльнoй зaвиcимocти ЭДC втopичнoй oбмoтки oт yглa пoвopoтa poтopa вpaщaющиecя тpaнcфopмaтopы paздeляют нa cлeдyющиe типы:

1.         cинycнo-кocинycный вpaщaющийcятpaнcфopмaтop (CKBT) — y нeгo вoзникaют нaпpяжeние  нa выxoдe oбмoтки , нaxoдящeеcя в cинycнoй зaвиcимocти oт yглa пoвopoтa poтopa a, и нaпpяжeниe  нa выxoдe oбмoтки , нaxoдящeecя в кocинycнoй зaвиcимocти oт yглa пoвopoтa poтopa a;


Информация о работе «Применение УВМ при автоматизации сортовых прокатов»
Раздел: Металлургия
Количество знаков с пробелами: 133841
Количество таблиц: 2
Количество изображений: 0

0 комментариев


Наверх