20. ПРИМЕНЕНИЕ ЗАЩИТНЫХ СРЕД

Способ защиты магниевых сплавов с помощью флюсов отли­чается простотой и надежностью, но имеет ряд недостатков: флюс окисляется, комкуется и твердеет, пленка флюса нарушается и теряет свои защитные свойства. При зачерпывании сплава пленка флюса может попасть в отливку, что создает опасность флюсо­вой коррозии, в результате чего стойкость отливок снижается.

Подпись: Рис. 1. Схема устройства для бес¬флюсовой плавки магниевых сплавов с использова-нием серы;
I—расплавленная сера; 2—труба для по-дачи сжатого воздуха; 3—печь; 4—сталь-ной тигель; 5—магниевый сплав

Выделяющийся хлор, пары и пыль от флюсов вызывают также коррозию литейного оборудования.

В последнее время появляется повышенный интерес к приме­нению газообразных сред для защиты от окисления и загорания расплава, т. е, к внедрению бесфлюсовой плавки магниевых сплавов.

Для создания защитной атмосферы на практике применяют. углекислый газ, аргон, сернистый ангидрид.

Подпись: Рис. 2. Схема подачи сернистого ангидрида для защиты поверхности расплава от окис-ления:
1— устройство для подачи сернистого ан-гид¬рида; 2—печь; 3—стальной тигель; 4—магниевый сплав
На рис. 1 приведена схема устройства для бесфлюсовой плавки магниевых сплавов с использованием порошкообразной серы, из которой при сгорании образуется сернистый ангидрид, На рис. 2 аналогичное устройство предусматривает возможность бесфлюсовой плавки магниевых сплавов путем защиты зеркала сплава непосредственно струёй сернистого ангидрида.

Наиболее действенным средством защиты является шестифто­ристая сера SF6 (элегаз) -тяжелый газ, неядовитый, без цвета и запаха, не горит и не поддерживает горения. Нетоксичность элегаза является существенным, преимуществом по сравнению с сер­нистым ангидридом,

Защитное действие элегаза основано на взаимодействии с расплавом, в результате чего образуется непроницаемая поверхностная пленка фторидов магния, обладающая способностью мгновенно восстанавливаться даже после многократного удаления.

3. ПЛАВКА МАГНИЕВЫХ СПЛАВОВ

Для плавки магниевых сплавов применяют тигельные печи с выемным или стационарным тиглем вместимостью 200-450 кг или отражательные печи большой вместимости. При этом после расплавления всей шихты сплав переливают в тигельные раздаточные печи, в которых производится его рафинирование.

В разогретый тигель или печь загружают небольшое количество размолотого флюса и около половины всего количества магния, поверхность которого также засыпается флюсом. После расплавления первой порции магния постепенно загружают осталь­ное количество магния. Затем, когда расплавится весь магний, в сплав при температуре 680-700 °С вводят предварительно мелко раздробленную лигатуру алюминий-марганец.

Марганец в магниевые сплавы вводят при температуре 850 °С в виде смеси металлического марганца или хлористого марганца О флюсом ВИЗ (см. табл. 2). Затем в тигель постепенно загружают возврат. В течение всего процесса плавки поверхность спла­ва должна быть покрыта слоем флюса ВИЗ.

Цинк присаживается в конце плавки при температуре рас­плава 700-720 °С. При той же температуре в сплав присажи­вается бериллий в виде лигатур магний - бериллий или марга­нец-алюминий-бериллий или в виде фторбериллата натрия NaBeF4. Лигатуры, содержащие бериллий, вводят в сплав до ра­финирования, а фторбериллат натрия - во время рафинирования.

Церий, являясь компонентом некоторых новых магниевых сплавов, входит в состав мишметалла, имеющего следующий со­став (%): 45-55 церия, до 20 лантана, 15 железа, остальное- редкоземельные элементы первой группы. При расчете шихты учитывают суммарное содержание всех редкоземельных элемен­тов. Мишметалл добавляют в расплав после рафинирования при помощи железного сетчатого стакана, погружаемого на глубину 70-100 мм от зеркала сплава.

Цирконий вводят в сплав в виде фторцирконата натрия Na2ZrFe при температуре 850-900 °С.

Если в магниевый сплав необходимо ввести значительное ко­личество циркония, как, например, в новый теплопрочный литейный сплав МЛ12, содержащий 4-5% Zn, 0,6-1,1% Zr, остальное- магний, приходится пользоваться так называемой шлак-лигатурой, Для приготовления шлак-лигатуры используют шихту следую­щего состава, %: 50 фторцирконата калия; 25 карналлита; 25 магния. Шлак-лигатуру приготавливают одновременно в двух тиг­лях. В одном тигле расплавляют карналлит и после прекраще­ния бурления при температуре 750-800 °С замешивают фторцирконат калия до получения однородной расплавленной массы. За­тем в эту смесь вливают расплавленный в другом тигле магний, нагретый до 680-750 °С. Полученная шлак-лигатура содержит 25-50% циркония.

Заключительной стадией плавки любого магниевого сплава является обработка его в жидком состоянии с целью рафиниро­вания, а также модифицирования структуры. Рафинирование магниевого сплава проводят после введения всех легирующих доба­вок и доведения температуры расплава до 700-720 °С. Лишь в случае обработки магниевого сплава фторбериллатом натрия тем­пература нагрева сплава перед рафинированием повышается до 750-760 °С. Обычно рафинирование производят путем перемеши­вания сплава железной ложкой или шумовкой в течение 3-6 мин; при этом поверхность расплава посыпают размолотым флюсом ВИЗ. Перемешивание начинают с верхних слоев сплава, затем ложку постепенно опускают вниз, не доходя до дна при­мерно на 1/2 высоты тигля. Рафинирование считается законченным, когда поверхность сплава приобретает блестящий, зеркаль­ный вид. По окончании рафинирования с поверхности сплава счи­щают флюс, а зеркало сплава вновь покрывают ровным слоем свежей порции размолотого флюса ВИЗ. Затем магниевые сплавы, кроме сплавов МЛ4, МЛ5 и МЛ6, нагревают до 750-780 °С и вы­держивают при этой температуре в течение 10-15 мин.

Магниевые сплавы марок МЛ4, МЛ5 и МЛ6 перед разливкой подвергают модифицированию. После снятия с поверхности сплава загрязнений, образовавшихся при модифицировании, и после за­сыпки поверхности расплава свежей порцией флюса эти сплавы выдерживают, при этом температура понижается до 650-700 °С, затем производят заливку форм.

В ходе плавки тщательно наблюдают за состоянием поверхности жидкого сплава. Если сплав начинает гореть, его необходимо засыпать порошкообразным флюсом при помощи пневматического флюсораспылителя.


Информация о работе «Технология плавки и разливки магниевых сплавов»
Раздел: Металлургия
Количество знаков с пробелами: 20543
Количество таблиц: 2
Количество изображений: 4

Похожие работы

Скачать
305550
1
104

... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...

Скачать
70212
0
0

... утепляют или разогревают. Принцип направленного затвердевания, осознанный и сформулированный при освоении производства отливок из алюминиевых и магниевых сплавов, сейчас совершенно обязателен для получения качественных отливок из любых сплавов. Разработка научных основ плавки сплавов цветных металлов, их кристаллизации, освоение технологии получения фасонных отливок и слитков является заслугой ...

Скачать
259162
24
61

... ? 25. В чем сущность биохимических, фотохимических, радиационно-химических, плазмохимических процессов? Указать области их применения. 26. Какие основные группы физических процессов используют в системах технологий? 27. Дать определение машиностроению как комплексной области. Какова структура машиностроительного предприятия? 28. Раскрыть сущность понятий «изделие», «деталь», «сборочная единица ...

Скачать
46896
4
14

... турбин, из которого следует, что для никелевых сплавов повышение рабочих температур и напряжений связывается с применением литейных сплавов с равноосной и направленной структурой. Повышение жаропрочности достигается усложнением химического состава сплава, увеличением содержания упрочняющей γ-фазы (рис.8). Для работах лопаток энергетических газотурбинных установок разработаны деформируемые ...

0 комментариев


Наверх