Реферат
на тему: Пути повышения эффективности обучения решению задач на примере школьного курса физики
Выполнила:
John Doe
Научный руководитель:
Richard Roe
План
Введение
§1. Что такое задача.
Особенности школьных задач по физике.
§2. Разновидности задач и их особенности.
§3. Структура решения задач.
Способы решения задач.
§4. Педагогические основы обучения решению задач по физике.
Заключение.
Литература.
Введение.
В изучении курса физики решение задач имеет исключительно большое значение, и им отводится значительная часть курса.
Решение и анализ задачи позволяют понять и запомнить основные законы и формулы физики, создают представление об их характерных особенностях и границах применение. Задачи развивают навык в использовании общих законов материального мира для решения конкретных вопросов, имеющих практическое и познавательное значение. Умение решать задачи является лучшим критерием оценки глубины изучения программного материала и его усвоения.
В основе каждой физической задачи положено то или иное частное проявление одного или нескольких фундаментальных законов природы и их следствий. Поэтому, прежде чем приступать к решению задач какого-либо раздела курса, следует тщательно проработать теорию вопроса и внимательно разобрать иллюстрирующие ее примеры. Без твердого знания теории нельзя рассчитывать на успешное решение и анализ даже простых задач, не говоря уже о более сложных.
§1. Что такое задача?
Особенности школьных задач по физике.
Физической задачей в учебной практике обычно называют небольшую проблему, которая решается с помощью логических умозаключений, математических действий и эксперимента на основе законов и методов физики. По существу, на занятиях по физике каждый вопрос, возникший в связи с изучением учебного материала, является для учащихся задачей. Активное целенаправленное мышление всегда есть решение задач в широком понимании этого слова.
Решение физических задач – одно из важнейших средств развития мыслительных творческих способностей учащихся. Часто на уроках проблемные ситуации создаются с помощью задач, а этим активизируется мыслительная деятельность учащихся.
Ценность задач определяется прежде всего той физической информацией, которую они содержат. Поэтому особого внимания заслуживают задачи, в которых описываются классические фундаментальные опыты и открытия, заложившие в основу современной физики, а также задачи, показывающие присущие физике методы исследования. Примерами могут служить задачи об опытах Штерна, О.Герике, А.Ф.Иоффе.
Некоторое понятие об основном физическом методе исследования явлений природы – эксперименте, основу которого составляют измерения и математические исследования функциональной зависимости между физическими величинами, целесообразно дать с помощью экспериментальных задач. Например, уже в седьмом классе могут быть решены следующие задачи: «проградуировать пружину и выразить формулой зависимость ее удлинения от приложенной силы».
Задачи с историческим содержанием позволяют показать борьбу идей, возникавшие перед учеными трудности и пути их преодолевания. «Ничто так не способствует общему развитию и формированию детского сознания, как знакомство с историей человеческих усилий в области науки, отраженной в жизнеописаниях великих ученых прошлого и постепенной в эволюции идей», – писал П.Ланжевен. Примерами могут служить задачи об опытах по определению скорости света, изучению строения атома и т.д.
Весьма полезно составление физических задач политехнического содержания на базе местного производства:
Один из проектов международной телевизионной связи предусматривает применение для этой цели спутника Земли. На какую высоту над экватором нужно запустить спутник на восток, чтобы с Земли он казался неподвижным? Какое минимальное количество таких спутников нужно запустить, чтобы любая точка экватора «просматривалась» хотя бы одним спутником?
Значительный интерес для связи физики с живой природой представляют задачи с биофизическим содержанием.
Почему жара в местах с влажным климатом переносится труднее, чем в областях с сухим климатом?
Наряду с задачами производственного и естественнонаучного содержания большое значение для связи обучения с жизнью имеют задачи о физических явлениях в быту. Они помогают видеть физику «вокруг нас», воспитывают у учащихся наблюдательность. Например:
Рассчитать стоимость электроэнергии, которая потребляется вашей стиральной машиной, холодильником или телевизором за 3 ч. работы.
В целях политехнического обучения задачи важны также как средство формирования ряда практических умений и навыков. В процессе решения задач учащиеся приобретают умения и навыки применять свои знания для анализа различных физических явлений в природе, технике и быту; выполнять чертежи, рисунки, графики; производить расчеты; пользоваться справочной литературой; употреблять при решении экспериментальных задач приборы и инструменты…
С помощью задач можно ознакомить учащихся с возникновением новых прогрессивных идей, обратить внимание на достижения советской науки и техники. Интересны в этом отношении задачи с данными о полетах советских кораблей (космических), о гигантских электростанциях, о новых технических изобретениях и т.д.
Решение задач – нелегкий труд, требующий большого напряжения сил, он может нести с собой и творческую радость успехов, любовь к предмету, и горечь разочарований, неверие в свои силы, потерю интереса к физике. Решение задач – чуткий барометр, по которому учитель может постоянно следить за успехами и настроением учеников и эффективностью своей учебно-воспитательной работы.
§2. Разновидности задач и их особенности.
Задачи по физике весьма разнообразны по содержанию и дидактическим целям. Их можно классифицировать по многим признакам:
- по способу решения;
- по содержанию;
- по степени трудности (простые, сложные);
- по целевому назначению (тренировочные, контрольные).
Положив в основу классификации способ решения, можно выделить следующие виды задач: количественные, качественные или задачи-вопросы, экспериментальные и графические.
Задачи-вопросы – это такие задачи, при решении которых требуется объяснить то или иное физическое явление или предсказать, как оно будет протекать при данных условиях; в содержании этих задач отсутствуют числовые данные.
Например: Почему волосок электрической лампочки накаливается добела, в то время как провода остаются холодными, хотя по ним проходит такой же ток (8 кл.). И такие задачи решаются устно; необходимость обоснования ответов на поставленные вопросы приучает учащихся рассуждать, помогает глубже осознать сущность физических законов.
Количественные задачи – это такие задачи, в которых ответ на поставленный вопрос не может быть получен без вычислений. При решении количественных задач качественный анализ также необходим, но он дополняется еще и количественным анализом с подсчетом тех или иных количественных характеристик процесса. Количественные задачи разделяют на
- простые (тренировочные);
- сложные.
Под тренировочными задачами подразумеваются задачи, требующие простого анализа и простого вычисления. Решение таких задач (в небольшом количестве) необходимо для конкретизации только что сообщенной закономерности. Наиболее легкие из них решаются устно.
Пример количественной задачи: Определить сопротивление нихромовой проволоки, длина которой 150 м., а площадь поперечного сечения 0,2 мм2.
Экспериментальные задачи – это задачи, при решении которых с той или иной целью используется эксперимент. Например: С помощью мензурки с водой определить вес деревянного бруска…
Графические задачи – это такие задачи, в процессе решения которых используют графики. Например:
1. Построить график пути равномерного движения, если u = 2 м/с.
2. Какие явления характеризует каждая часть графика АВ, ВС, СD и DE?
t,oC A
20
10
0 t, мин.
-10 B C
-20 D E
По роли графиков в решении задач их можно подразделить на два вида:
- задачи, ответ на вопрос которых может быть найден в результате построения графика;
- задачи, ответ на вопрос которых может быть найден с помощью анализа графика.
Решение графических задач способствует уяснению функциональной зависимостью между физическими величинами, привитию навыков работы с графиками, развитию умения работать с масштабами.
Решение экспериментальных задач (см. выше) способствует развитию наблюдательности, а также совершенствуются навыки обращения с приборами.
Положив в основу классификации задач их содержание, можно выделить следующие виды задач по физике:
- задачи с конкретным физическим содержанием;
- задачи с абстрактным содержанием;
- задачи с техническим содержанием;
- задачи с историческим содержанием;
- занимательные задачи.
Задачи с техническим содержанием – задачи, в которых отражена связь физики с техникой или производством. Например: Почему для постройки сверхскоростных реактивных самолетов используют специальные жароустойчивые сплавы?
Подобные задачи учитель может составлять сам, используя сообщения из газет, журналов, радио и телевидения. При решении таких задач все внимание учеников сосредоточено на раскрытии новых терминов.
Задачи с историческим содержанием – это такие задачи, в условиях которых использованы исторические факты об открытии законов физики или каких-либо изобретений. Они имеют большое познавательное и образовательное значение. Например, в 7 кл., при изучении закона Архимеда для газов, можно решить задачу: Ученый Аристотель, живший в IV веке до н.э. обнаружил, что кожаный мешок, надутый воздухом, и тот же мешок без воздуха, сплющенный, имеют одинаковый вес. На основании этого опыта он сделал неверный вывод, что воздух не имеет веса. В чем заключалась ошибка Аристотеля?
Занимательные задачи – это такие задачи, содержание которых дается в занимательной форме. Они могут быть качественными, экспериментальными или количественными.
Необычная постановка вопроса в таких задачах и последующее обсуждение результатов обычно глубоко заинтересовывают учащихся. К сожалению, в сборниках задач по физике мало задач занимательного характера. Поэтому их приходится подбирать учителю из других источников. Например: Я.И.Перелыман «Занимательная физика», «Физика на каждом шагу»; В.И.Зибера «Задачи-опыты по физике». Пример занимательной задачи: почему не удается встать со стула, не нагибая корпуса вперед? Проверить на опыте и т.д.
§3. Структура решения задач.
Способы решения задач.
Возникает вопрос: как же оформить решение задачи, из каких компонентов состоит решение задачи?
В краткой записи содержания физической задачи указывают физическое тело или явление, о котором идет речь. Дополнительные же табличные данные записывают ниже вопроса или оставляют для них 1-2 строчки после записи данных величин, т.е. пишут данные и что надо найти, затем переводят неосновные единицы величин в СИ, далее идет графа-анализ, записывают искомую формулу, затем идет выполнение вычислений в графе решение. Например, дана задача: Определить сопротивление нихромовой проволоки, длина которой 150 м., а площадь поперечного сечения – 0,2 мм2.
Дано: Нихром. провол. l = 150 м.; S = 0,2 мм2 | СИ 0,2·10-6 м2 | Анализ l R = r ––– S | Решение 110·10-8 Ом·м ·150 м R = –––––––––––––––––– = 0,2·10-6 м2 = … |
R – ? r = 110·10-8 Ом·м. | Ответ: |
Для решения количественных задач применяют следующие способы:
- алгебраический;
- геометрический;
- тригонометрический;
- графический.
Я начну с рассмотрения решения физических задач алгебраическим способом, который заключается в том, что задачу решают с помощью формул и уравнений. Это основной способ решения (см. задачу выше, решенную алгебраическим способом).
Геометрический способ решения задач заключается в том, что при решении задач используют теоремы геометрии. Например, довольно часто используют теорему о длине катета, лежащего против угла 30о, теорему Пифагора и др. Особенно часто геометрический способ решения применяют при решении задач на сложение сил. Например: Автомобиль массой 5 т. движется с постоянной скоростью по прямой горизонтальной дороги. Коэффициент трения шин о дорогу равен 0,03. Определите силу тяги, развиваемую двигателем.
Дано: m = 5 т. m = 0,03 u = const | СИ 5·103 кг. | Анализ На автомобиль действуют 4 силы: сила тяги. Fт, сила трения Fтр, сила тяжести mg и сила реакции дороги N: |
Fтяж – ? g = 9,8 м/с2 |
y
N
Fтр 0 Fт x
mg
N + Fт + mg + Fтр = ma
0x: 0 + Fт + 0 – Fтр = 0
0y: N + 0 – mg + 0 = 0
=> N = mg, Fтр = mN,
Fт = mmg
Решение.
Fт = 0,03 · 5·103 кг · 9,8 м/с2 = 1470 Н.
Ответ: 1470 Н.
Тригонометрический метод заключается в том, что в анализе используют тригонометрические соотношения, например формулы
u = u0·cosa, u = u0·sina. Но этот способ решения применяется редко.
Графический способ заключается в том, что при решении задачи используют график. В одних случаях по данным, полученным из графика, находят ответ на вопрос задачи. В других случаях, наоборот, определенные зависимости между физическими величинами выражают графически.
Например: На рисунке изображен график изменения температуры олова в зависимости от времени. Какие процессы происходят с оловом на участках АВ, ВС, CD? Какова температура плавления олова?
t, oС D
232 B
200 C
100
... и реализующая его компьютерная программа, позволяющая искать химические закономерности, эксплуатация такой программы может проходить уже вне области компьютерной химии. Глава 3. Мультимедийные технологии как средство повышения эффективности обучения в школе Современная школа с ее проблемами заставляет думать о том, как сделать процесс обучения более результативным. Как учить так, чтобы ...
... ее, вследствие недоработки отдельных важных сторон использования ПЭВМ в школьной практике. Это несоответствие и определило актуальность настоящего исследования. Цель исследования состоит в повышении эффективности обучения химии при использовании информационной технологии. Объектом исследования является процесс обучения химии. Предмет исследования - выявление влияния информационной технологии ...
... учитель тоже смешивает краски, разучивает этюды, осваивает приемы – только это педагогические краски, этюды, приемы…» Вторым вопросом моего доклада является « Методика работы на интерактивном оборудовании » Интерактивная доска – это сенсорный экран, присоединенный к компьютеру, изображение с которого передает на доску проектор. Достаточно прикоснуться к поверхности доски, чтобы начать работу на ...
... . Учитель должен четко представлять, каким приемам учебной работы в соответствии с возрастными возможностями, нужно обучать школьников в конкретных классах. Диспуты, дебаты и игры приводят к повышению знаний учащихся, способствуют росту эффективности обучения истории. Заключение Общей социальной функцией обучения является передача от человека к человеку, от поколения к поколению знаний, ...
0 комментариев