23 ТАР - фильтр прореживания интерполирования
CONTROL - контроллер управления
RANGE - ограничитель уровня
PIPELINE DELAY - линия задержки
п. 3.2. Разработка структурной схемы абонентского устройства кодированияЗадачей работы является: прием и передачи данных. На входе - стандартный компонентный телевизионный сигнал, на выходе - стандартный цифровой компонентный сигнал формата 601/25.
VP261 VP2615 VP520 VP 510
Буфер приема Буфер памяти Буфер памяти
Рис. 11.
Для аппаратной реализации данного устройства декодирования по выбранному стандарту используем специализируемую элементарную базу фирмы GEC PLESSEY Plesse т. к. она построена по интегральным технологией, обладает большой функциональностью, позволяет сократить массу, габариты, стоимость.
На основе выбранных компонентов составим структурную схему декодирующего абонентского устройства видеоконференций.
Входной поток по стандарту передачи видеоданных Н. 261 поступает на демультиплексер, чтобы обеспечить постоянство цифрового потока. В устройстве декодирования используют буфер приема RECEVE BUFER 32Кх8, который имеет размер 32 Кбайта . Для декодирования демультиплексированой информации поставим видеодекодер VP2615, работа которого была описана выше. Для проведения операции декодирования необходимо ОЗУ на 1 кадр. Т.к. мы используем формат CIF , объем памяти должен быть 128 Кб . Для преобразования формата CIF в стандартный формат , согласно рекомендации .CCIT 601 используем конвертор VP 520. Для обеспечения преобразования необходима память на два кадра. Объем информации 256 Кб . Для преобразования цифрового цветоразностного сигнала в RGB используем конвертор цветного изображения VP 510. Для управления декодером используем системный контроллер, который может управляться центральным процессором компьютера .
п.3.3. Сравнительный анализ оконечных устройств имеющихся на рынке на данный моментCybertronic Zydacron Z250
Комплект для проведения видеоконференций фирмы Cybertronic, работающий с ОС Windows 3.х, 95, OS/2 Warp и Windows NT, представляет собой интегрированный на единой плате видео- и аудиокодек с возможностью проведения видеоконференций по линиям POTS и ISDN.
Cybertronic Zydacron Z250 представляет собой неплохую альтернативу другим комплектам для проведения настольных видеоконференций. Среди несомненных достоинств этого продукта - интегрированные на одной плате ISDN-адаптер и кодеки и, следовательно, экономия как минимум одного разъема, а также длинный список совместимых операционных систем, каким не могут похвастаться гораздо более дорогие и известные продукты. Расширению возможностей комплекта в значительной мере способствует наличие комплекта для разработчика Zydacron SDK. Относительно высокое качество изображения и звуковой информации обеспечивается за счет качественной реализации кодека. К сожалению, на этом список "плюсов" данного продукта заканчивается. Среди наиболее существенных недостатков следует отметить ограниченные возможности по реализации совместных действий (только передача файлов и разделение экрана), а также отсутствие совместимости с T.120, что сильно ограничивает возможности продукта с точки зрения его интеграции с другими системами видеоконференций.
Технические характеристики Zydacron Z250
Видео: соответствие стандарту H.261; частота кадров и разрешение - 15 кадр/с и CIF 352x288 или 30 кадр/с и QCIF 176x144; протоколы - эмуляция последовательного порта, дополнительная эмуляция TCP/IP и поддержка T.123; максимальная пропускная способность - до 56 Кбит/с.
Аудио: G.711, G.728, G.722
Коммуникации: BRI
Аппаратные требования: процессор 486/33 МГц или выше, оперативная память - не менее 8 Мбайт, объем свободного пространства на жестком диске - 20 Мбайт.
ShareVision PC3000
Комплект фирмы Creative Labs включает в себя звуковую плату, видеоплату, факс-модем, соответствующее ПО, наушники и 1/3" CCD цветную видеокамеру.
ShareVision, одна из немногих систем, поддерживающих только видеоконференции по модемным линиям, представляет собой тем не менее разумный компромисс между стоимостью комплектации одного рабочего места (около 1000 долл.) и функциональными возможностями продукта. Несмотря на то что система включает возможности разделения приложений, передачи файлов, захвата изображений, проведения аудио- и видеосеансов, она характеризуется также рядом существенных недостатков. Среди наиболее заметных - весьма невысокое качество изображения, отсутствие возможностей проведения многоточечных конференций и использования преимуществ ISDN. Однако ShareVision можно рассматривать как неплохое техническое решение для тех пользователей, которым, в первую очередь, важны стоимость комплекта видеоконференции, а также возможность работы по обычным телефонным линиям.
Технические характеристики ShareVision Pc3000
Системные требования: ПК с процессором 486SX 33 МГц (рекомендуется 486 DX2-66), оперативная память объемом не менее 8 Мбайт, объем свободного пространства на жестком диске не менее 6 Мбайт, два свободных ISA-разъема, дисплей VGA или SVGA (рекомендуется 16- или 24-разрядный видеоадаптер), MS Windows 3.1 или выше. Имеется также версия ПО для платформы Macintosh
Видеовход: программно выбираемый источник видеоизображений (NTSC или PAL).
Режимы видеоадаптера: VGA (8-, 16- или 24-разрядный), SVGA.
Частота и размер кадров изображения: 15 кадров, 96х80 пикселов; 12 кадров,128х96 пикселов; 10 кадров, 160х112 пикселов.
Захват видеокадра: 320х240 пикселов; 640х480 пикселов; цветность - до 24 разрядов.
Аудиовход: микрофон
Аудиовыход: тандартные колонки или наушники.
Алгоритм сжатия: VATP (Vector Adaptive Transform Processing).
Видеокамера: тип - 1/3" CCD, цветная; выход: составной цветной NTSC-сигнал.
Модем: внешний, скорость передачи - до 28,8 Кбит/сек.
п.3.4. Разработка принципиальной схемы декодирования абонентского устройства.Для разработки принципиальной схемы рассмотрим каждую микросхему в отдельности . Принципиальная схема изображена в приложении 1
VP 2614 | |
Выводы | Значения |
LD | линия выходных данных |
LEN | сигнал разрешения ввода данных ( при низком уровне) |
LCLK | строб шины входа |
LRED | запрет захвата данных ( при низком уровне) |
DBUS 7:0 | шина управления и данных |
DMODE 3:0 | выходной идентификатор данных |
PM 2:0 | идентификаторы для добавления информации для DBUS 7:0 ( не используются для VP 2615) |
DCLK | последовательный О/Р строб для шины DBUS 7:0 тактируемый SCLK |
SCLK | системная тактовая частота. Должна быть 27 МГц для 30 Гц фреймов |
HD7:0 | Двунаправленная шина данных |
HA3:0 | шина адреса системного контроля |
WR | запись строба системного контроллера ( активный низкий уровень) |
RD | чтение строба из системного контроллера ( активный низкий уровень) |
CEN | выбор микросхемы из системного контроллера ( активный низкий уровень) |
ERR | выходная индикация фреймов и декодирования ошибок ( активный низкий уровень) |
EVT | индикация возможности установки данных нового кадра( активный низкий уровень) |
B7:0 | шина передачи данных к принимающему буферу |
А14:0 | адресная шина к принимающему буферу |
WS | запись строба для принимающего буфера ( активный низкий уровень) |
BCS | Выбор принимающего буфера ( активный низкий уровень) |
BEN | разрешение выдачи на буфер ( активный низкий уровень) |
ТСК | тестовая тактовый сигнал JTAG |
ТМC | выбор режима JTAC |
TDI | I/P данные JTAC |
TDO | О/Р данные JTAC |
TRCT | сброс JTAC |
ТОЕ | перевод всех в импедансное состояние ( активный низкий уровень) |
RES | сброс питания ( активный низкий уровень) |
VP2615 | |
DIN 7:0 | этот порт используется для ввода квантованных значений данных и управляющей информации, его функции определяют DMODE 3:0, данные тактируются фронтом DCLK |
DMODE3:0 | управляющий вход для DIN 7:0, данные тактируются фронтом DCLK |
DCLK | сигнал используется для стробирования данных на входах DIN и DMODE. Может запрещаться подачей WAIT STATE на DMODЕ, может получаться делением SYSCLK |
YUV7:0 | входная шина данных пикселей в формате YUV – блока с частотой равной |
четвери SYSLCK | |
VPIX | синхронизирующие выходные импульсы с периодом более чем удвоенный частотой SYSCLK, который позволяет работать с данными пикселей через YUV порт |
MBOUT | синхронизирующий выход с периодом больше чем макроблок и переходящей на высокий уровень по последнему пикселю макроблока. В конце макроблока MBOUT переходит в низкий уровень до следующего макроблока. |
FRMOUT | синхронизирующий выход, принимающий высокое значение при новом фрейме и сигнализирующий о новой фрейме для YUV порта. Он имеет высокое значение до последнего выходного пикселя. FRMOUT переходит в низкий уровень до начала нового фрейма |
FS 15:0 | шина данных для записи и чтения внешнего DRAM фрейма |
ADR7:0 | адресная шина , управляющая внешним DRAM фреймом |
RAS | вектор адресного строба, управляющая внешним DRAM фреймом |
Cas | управление стробом адресов строк внешним DRAM фреймом |
RW1 | управление записью / чтения внешнего DRAM1 |
RW2 | управление записью / чтения внешнего DRAM2 |
ОЕ1 | разрешение вывода внешнего DRAM 1 или ADR8, если используется DRAM 256 K |
ОЕ2 | разрешение вывода для внешнего DRAM 2 или ADR8, если используется DRAM 256 K |
CBUS7:0 | двунаправленная шина данных, используемая микропроцессором. Данные |
CSTR | входной строб данных и выхода порта CBUS |
CEN | при низком состоянии этого вывоза порт CBUS может использоваться для ввода вывода данных |
CADR | при высоком уровне сигнал на CBUS определяется как данные, при низком, как инструкции |
SYSCLK | системная тактовая частота, максимум 27 МГц, может варьироваться от 35 % до 65% на каждый период. Все внешние тактовые частоты получаются делением этой частоты. |
RESET | активный низкий уровень. При использовании в течение операции все данные фреймом будут потеряны. |
ТСК - | тестовая частота для JTAG |
ТМS | выбор режима JTAC |
TDI | I/P данные JTAC |
TDO | О/Р данные JTAC |
TRST | вывод сброса JTAC |
VP510 | |
R7:0 | беззнаковые данные красного, диапазон может изменяться при помощи таблицы ОЗУ |
G7:0 | беззнаковые данные красного, диапазон может изменяться при помощи таблицы ОЗУ |
B7;0 | беззнаковые данные красного, диапазон может изменяться при помощи таблицы ОЗУ |
Y7:0 | беззнаковые входные или выходные данные яркости, диапазон определяется пользователем. |
С7:0 – | двухкомпонентные или знаковые бинарные данные , мультиплексированые монохромно, диапазон определяется пользователем |
D7:0 | шина данных хоста, используемая для чтения записями |
А4:0 | шина адреса хоста, коэффициенты матрицы и управляемые регистры |
CLK | внешнее тактовая частота, все входы и выходы тактируются фронтом |
HREF | горизонтальная или композитная частота, используемая как индикатор начала линии и вырезаемая КИХ фильтрами |
HDLY | задержка входного HREF на 39 периодов для коррекции сигнала с выхода фильтра |
FI | флаг входа определяется пользователем, не управляется изнутри |
FO | задержка FI на 39 периодов для коррекции выходного сигнала фильтра |
CRI | вход, показывающий допустимость яркостных и цветоразностных данных |
CRO | выход , который показывает появление яркостных и цветоразностных данных на выходных выводов |
OEN | разрешает третье состояние шины при низких уровнях |
CS | выбор схемы с хоста системы ( активно низкий) |
RD | запрос на хост на чтение матричный коэффициентов и счетчика ОЗУ ( активный низкий) |
WR – запрос с хоста на запись устройства ( активный низкий) | |
RES | асинхронный сброс, используемый для инициализации устройства |
VP520S | |
Y7:0 | входная – выходная шина яркостей |
C7:0 | входная – выходная шина цветоразностей |
М7:0 | входная – выходная шина макроблоков |
D15:0 | 16 битная шина данных для DRAM фреймов |
A7:0 | мултиплексированная адресная шина для DRAM |
А8:0 | сигнальный бит адреса более значимый бит адреса или второй Cas |
RAS | строчный строб для DRAM |
CAS | вертикальный строб для DRAM |
R/W | сигнал чтения /записи для DRAM |
HREF | частота синхронизации горизонтальная |
VREF | частота синхронизации вертикальная |
CREF | вход или выход CREF |
FREF | входной или выходной индикатор поля |
HBLNK | выход горизонтального блинка |
CSYNC | композитный выход синхронизации |
CLMP | определяет уровень черного каждый период для АЗП |
VRST | идентификатор начала фрейма |
FRST | индикатор поля |
REQYUV | прием макроблоков из декодера |
NCLK | строб ввода/вывода макроблока |
FSIG | сигнал начала готовности фрема |
CSLK | системная тактовая частота для систем Pal/NTSC 27 МГц |
HD7:0 | шина данных хоста |
HA3:0 | шина адреса контроллера хоста |
RD | стро чтения с хоста, активный низкий уровень) |
WR | строб записи нахост активный низкий уровень |
CER | разрешение о стробирования ( акт |
RST | сброс питания |
TDI | I/P данные JTAG |
TDO | O/P данные JTAG |
ТМS | выбор режима JTAC |
TDI | I/P данные JTAC |
TDO | О/Р данные JTAC |
TRST | вывод сброса JTAC |
Предельно допустимые значения
VP 2615 | VP 2614 | VP 520 | |
Напряжение питания VDD | -0,5 V до 7,0 V | -0,5 V до 7,0 V | -0,5 V до 7,0 V |
Входное напряжение V in | -0,5 V до VDD + 0.5 V | -0,5 V до VDD + 0.5 V | -0,5 V до VDD + 0.5 V |
Выходное напряжение V out | -0,5 V до VDD + 0.5 V | -0,5 V до VDD + 0.5 V | -0,5 V до VDD + 0.5 V |
Предельный прямой ток Ik | 18 mA ( см. замечание 2. ) | 18 mA ( см. замечание 2. ) | 18 mA ( см. замечание 2. ) |
Статистическое напряжение разряда | 500 V | 500 V | 500 V |
Температура хранения Ts | -55 0 C до 150 0 С | -65 0 C до 150 0 С | -65 0 C до 150 0 С |
Диапазон рабочих температур T AMB | 00 C до 70 0 С | 00 C до 70 0 С | 00 C до 70 0 С |
Температура кристалла | 125 0 С | 100 0 С | 150 0 С |
Мощность рассеивания корпуса | 1000 mW | 1000 mW | 5000 mW |
Замечания.
1. Превышение перечисленных значений может привести к неустранимому нарушению работоспособности.
2. Максимальные значения в течение первой секунды для одного тестируемого вывода.
3. Превышение абсолютного значения уровня в течение длительного периода может понизить надежность устройства.
4. Измерения проводятся для вытекающего тока.
Статические электрические характеристики.
Характеристики | Значение | Ед. измерения | Номер микросхемы | |
min | max | |||
Выходное максимальное напряжение | 2.4 | - | V | VP 2615 |
2.4 | - | VP 2614 | ||
2,4 | - | VP 520 | ||
Выходное минимальное напряжение | - | 0,4 | V | VP 2615 |
- | 0.4 | VP 2614 | ||
- | 0,4 | VP 520 | ||
Входное максимальное напряжение | 2,0 | - | V | VP 2615 |
2.0 | - | VP 2614 | ||
2,0 | - | VP 520 | ||
Входное минимальное напряжение | - | 0,8 | V | VP 2615 |
- | 0.8 | VP 2614 | ||
- | 0,8 | VP 520 | ||
Ток утечки входа | -10 | +10 | m A | VP 2615 |
-10 | +10 | VP 2614 | ||
-10 | +10 | VP 520 | ||
Емкость входа | 10 | rF | VP 2615 | |
10 | VP 2614 | |||
10 | VP 520 | |||
Ток утечки выхода | -50 | +50 | m A | VP 2615 |
-50 | +50 | VP 2614 | ||
-50 | +50 | VP 520 |
конвертор видео кодер мульиплексор
фильтр
конвертор видео декодер демультиплексер
фильтр
Y 720х288, Cr/Cb 360х288 Y 360x288, Cr/Cb 180
Рис. 12.
На вход видеофильтра подаем стандартный цифровой сигнал в соответствии с рекомендацией CCIt 601. Цифровой поток = 720*288*2*1байт + 2*360*288*2*1 байт = 829440 байт. ( формат PAL).., . После прохождения сигнала через видеофильтр скорость цифрового потока стала соответственно 360*288*2 + 180*144*2*2 = 311040 байт( формат CIF) . На выходе же видеокодека скорость потока будет от 64 К бит , до 2 Мбит, в зависимости от того, какой коэффициент
сжатия применялся в кодере. ( от 20 до 100).
Необходимо использовать устройство, совместимое по стандартным вертикальной и горизонтальной развертки с сигналом декодирующего устройства. Для подключения стандартных телевизоров необходимо использовать конвертор цифрового преобразования в стандартный сигнал PAL/NTSC
Для получения качественного изображения необходимо использовать следующее конечное оборудование: монитор с разрешением не менее чем 0,26 дюйма и частотой кадровой развертки 30 Гц. Приемное оборудование управляется при помощи компьютера и программного обеспечение. В комплект абонентского оборудования может входить видеокамера для обеспечения двухсторонней связи с абонентами. Камера может управляться с компьютера, либо при помощи специального устройства, которое отслеживает перемещение абонента видеоконференций .
Визуальные эргономические параметры ВДТ являются параметрами безопасности и их неправильный выбор приводит к ухудшению здоровья пользователей.
Конструкция ВДТ, его дизайн и совокупность эргономических параметров должны обеспечивать надежное и комфортное считывание отображаемой информации
Конструкция ВДТ должна обеспечивать возможность фронтального наблюдения экрана путем поворота корпуса в горизонтальной плоскости вокруг вертикальной оси в пределах плюс-минус 300 и в вертикальной плоскости вокруг горизонтальной оси в пределах плюс-минус 300 с фиксацией в заданном положении.
Корпус ВДТ и ПЭВМ, клавиатура и другие блоки и устройства ПЭВМ должны иметь матовую поверхность одного цвета с коэффициентом отражения 0,4-0,6 и не иметь блестящих деталей, способных создавать бликов.
В целях защиты от электромагнитных и электростатических полей допускается применение приэкранных фильтров, специальных экранов и других средств индивидуальной защиты.
Конструкция ВДТ и ПЭВМ должна обеспечивать мощность экспозиционной дозы рентгеновского излучения в любой точке на расстоянии 0,05 м от экрана и корпуса ВДТ при любых положениях регулировочных устройств не должна превышать 100 мкР/час.
Конструкция клавиатуры должна предусматривать
опорное приспособление, позволяющее менять угол наклона поверхности клавиатуры в пределах от 5 до 15 градусов.;
высоту среднего ряда клавиш не более 30 мм;
минимальный размер клавиш – 13 мм, оптимальный – 15 мм
клавиши, с углублением в центре и шагом 19 плюс – минус 1 мм;
расстояние между клавишами не менее 3 мм.
Требования к помещениям для эксплуатации ВДТ.
Помещения должны иметь естественное и искусственное освещение. Естественное освещение должно обеспечивать коэффициент естественной освещенности не ниже 1,2% в зонах с устойчивым снежным покровом и не ниже 1,5% на остальной территории.
Расположение рабочих мест для взрослых пользователей в подвальных помещениях не допускается. Площадь на одно рабочее место для взрослых пользователей должна составлять не менее 20,0 куб. м.
Общие требования к организации и оборудованию рабочих мест в ВДТ.
Рабочие места по отношению к световым проемам должна располагаться так, чтобы естественный свет падал сбоку, преимущественно слева.
Схемы размещения рабочих мест должны учитывать расстояние между рабочими столами и видеомониторами, которое должно быть не менее 2,0 м, а расстояние между боковыми поверхностями не менее 1,2 м. Высота рабочей поверхности стола должна регулироваться в пределах 680-8—мм.
Для инженеров, обслуживающих учебный процесс в кабинетах в ВДТ, продолжительность работы не должна превышать 6 часов в день.
Визуальные эргономические параметры ВДТ и их измерения
не менее не более
Яркость знака кд/м.кв 35 120
Внешняя освещенность
Экрана, лк 100 250
Угловой размер знака 16 60
Угл.мин
Угловой размер знака определяется по формуле:
A = arctg (h/al)
H – высота знака
L – расстояние от знака до глаза наблюдателя
Нормируемые визуальные параметры видеодисплейных терминалов:
№№ п/п | Наименование товаров | Значение параметров |
1. | Контрастность | От 3:1 до 1,5:1 |
2. | Неравномерность яркости2 /элементов знаков, % | Не более- 25 |
3. | Неравномерность яркости2 / рабочего поля экрана, % | Не более +-20 |
4. | Формат матрицы знака Для прописных букв и цифр, ( для отображения диактрических знаков и строчных букв с нижними выносными элементами формат матрицы должен быть увеличен сверху или снизу на 2 элемента изображения | Не менее 7*9 элементов изображения не не менее 5*8 элементов изображения |
5. | Отношение ширины знака к его высоте для прописных букв | От 0,7 до 0,9 ( допускается от 0,5 до 1,0) |
6. | Размер минимального элемента отображения (пикселя), мм | 0,3 |
7. | Угол наклона линии наблюдения, град. | Не более 60 град. Ниже горизонтали |
8. | Угол наблюдения, град. | Не более 40 град. От нормали к любой точке экрана дисплея |
9. | Допустимое горизонтальное смещение однотипных знаков, % от ширины знака | Не более 5 |
10. | Допустимое вертикальное смещение однотипных знаков, %от высоты матрицы | Не более 5 |
11. | Отклонение формы рабочего поля экрана ВДТ от правильного прямоугольника не должно превышать: по горизонтали по вертикал по диагонали где В1 и В2 – значение длин верхней и нижней строк текста на рабочем поле экрана, мм; Н1 и Н2 – значение длин крайних столбцов на рабочем поле экрана, мм; D1 и D2 – значение длин диагоналей рабочего поля экрана, мм | DВ= 2(В1-В2)/(В1+В2) <0,02 DН=2(Н1-Н2)/(Н1+Н2) <0,02 DD=2(D1-D2)/(D1+D2) << 0.04(Н1-Н2) |
12. | Допустимая пространственная нестабильность изображения ( дрожание по амплитуде изображения) при частоте колебаний в диапазоне от 0,5 до 30 Гц,мм | Не более2*L10 e-4 |
13. | Допустимая временная нестабильность изображение (мерцание) | Не должна быть зафиксирована 90% наблюдателей |
14. | Отражательная способность, зеркальное и смешанное отражение ( блики),% ( допускается выполнение требований при использования приэкранного фильтра | Не более 1 |
Допустимые значения параметров неионозирующих электромагнитных излучений
Наименование параметров | Допустимые значения |
Напряженность электромагнитного поля по электрической составляющей на расстоянии 50 см от поверхности видеомонитора | 10 В/м |
Напряженность электромагнитного поля по магнитной составляющей на расстоянии 50 см от поверхности видеомонитора | 0,3 А/м |
Напряженность электромагнитного поля не должна превышать: - для взрослых пользователей | 20 Кв/м |
- для детей дошкольных учреждениц и учащихся средних специальных и высших учебных заведений | 15 кВ/м |
Напряженность электромагнитного поля на расстоянии 50 см. вокгур ВДТ по электрической составляющей должна быть не более: - в диапазоне 5Гц-2кГц | 25 В/м |
- в диапазоне частот 2-400 кГц | 2,5 В/м |
Плотность магнитного потока должна составлять не более -в диапазоне частот 5 Гц-2кГц | 250 иТл |
-в диапазоне частот 2-400 кГц | 25 нТл |
Поверхностный электростатический потенциал не должен превышать | 500 В |
Уровни звука, эквивалентные уровни звука и уровни звукового
давления в октавных полосах частот
Уровни звукового давления, дБ | Уровни звука, эквивалентные уровни звука, дБ. | ||||||||
Среднегеометрические частоты октавных полос, Гц | |||||||||
31,5 | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | |
59 | 48 | 40 | 34 | 30 | 27 | 25 | 23 | 35 | |
63 | 52 | 45 | 39 | 35 | 32 | 30 | 28 | 40 | |
67 | 57 | 49 | 44 | 40 | 37 | 35 | 33 | 45 | |
86 | 71 | 61 | 54 | 49 | 45 | 42 | 40 | 38 | 50 |
93 | 79 | 70 | 63 | 58 | 55 | 52 | 50 | 49 | 60 |
96 | 83 | 74 | 68 | 63 | 60 | 57 | 55 | 54 | 65 |
103 | 91 | 83 | 77 | 73 | 70 | 68 | 66 | 64 | 75 |
В последнее время компьютер стал одним из основных рабочих инструментов. В ПК хранятся самые разнообразные данные: информация о клиентах, финансовые документы, материалы для презентаций, другие постоянно нужные в работе документы. Известно, что для любой деловой активности жизненно важен обмен данными. Этот обмен может проводиться в разной форме - в виде обсуждения проблем с коллегами, общения с клиентами или поставщиками - но всегда является одним из важнейших способов работы.
Применение систем проведения видеоконференций для обмена информацией позволяет существенно упростить этот процесс. С помощью таких систем мы можем устанавливать связь с непосредственным участием компьютеров - достаточно сделать вызов со своего ПК, и можно в реальном времени обмениваться файлами, обсуждать их и совместно редактировать с помощью удобных для нас приложений. Этот метод позволяет быстро, легко и удобно обмениваться информацией.
Благодаря выводу на экран изображения собеседника, мы можем общаться с ним так же легко, как и при личной встрече. На экране видны жесты, мимика - все, что так облегчает нам понимание и никак не обеспечивается при работе с факсом, электронной почтой или телефоном. В результате исключаются потери времени и случайные ошибки. Таким образом, системы проведения видеоконференций
существенно помогают в ведении дел.
Самая недорогая и распространенная система видеоконференций базируется на персональном компьютере. Большинство настольных видеоконференций состоит из набора программ и аппаратуры, интегрированных в компьютер. Цена такого комплекта может колебаться от 1500 до 7000 долларов. Типичный набор состоит из одной-двух периферийных плат, видеокамеры, микрофона, колонок или наушников и программного обеспечения. Для связи используется либо локальная сеть, либо ISDN, либо аналоговые телефонные линии. Проблемой является низкое быстродействие при передаче по аналоговым линиям. Скорость самого быстродействующего модема (по крайней мере, из используемых) составляет 28.8 Кбит/с. Это фактически приводит к тому, что передача данных получает больший приоритет и становится более важной, чем аудио и видео. Поэтому настольные видеоконференции с использованием модемной связи обеспечивают передачу от 4 до 10 видеокадров в секунду, что вряд ли приемлемо. В лучшем случае результатом будет окошко с видеоизображением размером в 176х144 элемента.
Если же использовать ISDN, где доступна связь на скоростях 128 Кбит/сек, то возможна передача видео от 10 до 30 кадров в секунду с вдвое большим окном, чем при модемной связи. Использование ISDN возрастет от 50 до 80 процентов от общего числа систем видеоконференций. К сожалению, и ISDN присущи определенные недостатки, среди которых надо выделить высокую стоимость.
Наиболее оптимальный уровень быстродействия - это использование локальной вычислительной сети в качестве конвейера передачи. Теоретическое быстродействие передачи составляет 10 Mbps (или даже 100 Mbps с более новыми системами). Данный вариант имеет преимущество в быстродействии, однако чтобы получить подобный высокий уровень производительности, сеть должна быть специально выделена для проведения видеоконференций.
В данном разделе диплома по экономическому обоснованию пакета для видеоконференции необходимо определить из чего складывается себестоимость и оптовая цена, пользуясь методом укрупненного расчета. Этот метод позволяет определить цену изделия , не прибегая к громоздим и детальным расчетам затрат труда, материалов, покупных изделий, необходимых для изготовления того или иного оборудования. Сущность данного метода заключается в том, что рассчитывается один из элементов затрат, и далее используется сложившаяся структура затрат себестоимости производства аналогичной или близкой продукции.
Произведем расчет по следующей методике.
Руководствуясь блок- схемой, составляем спецификацию. На основе действующих прейскурантов основных цен вычисляется стоимость затрат на покупные изделия и полуфабрикаты. При этом дополнительно рассчитываются транспортно-заготовительные расходы в размере 5-10 % от стоимости покупных изделий.
Укрупненный расчет суммы затрат на материалы и суммы основной заработной платы производственных рабочих производим по следующим формулам:
М=( Пи*Ум)/Уп.и
Зп=(Пи*Уз.п.)/Уп.и.
где: М- стоимость основных материалов
Пи- стоимость покупных изделий и полуфабрикатов
Зп - основная заработная плата производственных рабочих
У п.и.; Ум; Уз.п. - удельный вес затрат соответственно на покупные изделия и полуфабрикаты, материалы и заработную плату.
Тогда полная себестоимость блока определяется:
С=( М+Пи+Зп(1+А))(1+В)
где А- коэффициент, учитывающий величину накладных расходов
В- коэффициент, учитывающий величину внепроизводственных расходов;
Оптовая цена изделия определяется в условиях серийного производства путем добавления к полной себестоимости плановых накоплений ( рентабельности ) с помощью соотношения:
Цо= С (1+(Р/100))
где Р- планируемый процент рентабельности.
В таблице № 1 перечислены основные составляющие пакета для системы видеоконференции.
Таблица№1
Наименование изделия | Количество единиц, шт. | Цена за единицу, рубли | Сумма расхода, рубли |
Видеокамера | 1 | 1380 | 1380 |
Микрофон | 1 | 90 | 90 |
Плата ввода видео | 1 | 1080 | 1080 |
Выделенная линия | 2 км | 9000 | 18000 |
Итого | 20550 |
Согласно таблице устанавливаем структуру затрат, характерную для мелкосерийного, серийного производства.
-стоимость основных и вспомогательных материалов М=10%
-стоимость покупных изделий и полуфабрикатов Пи=45%
-заработная плата производственных рабочих Зп=45%
Тогда М= ( 20550*10)/45=4566 рублей
Зп=( 20550*45)/45=20550 рублей
Полную себестоимость устройства ввода-вывода ТВ сигнала для видеоконференции определяем по формуле:
С= ( 4566+20550+20550(1+2,6)(1+0,026)=101019 рублей
Оптовая цена устройства ввода-вывода ТВ сигнала для видеоконференции равна:
Цо= 2655(1+ 1,1/100)=111121 рубля.
Нашей задачей является определение стандарта, который требуется для обеспечения работы абонентского устройства для видеоконференций в Internet.С конца 1996 года применяются два стандарта для проведения видеоконцеренций. Каждый из них имеют достоинства и недостатки.
Наилучший, с точки зрения пользователя можно выбрать методом иерархий.
Выбор инвестиционного
проекта
стоимость кол-во скорость качество
участников передачи картинки
Н324 Н323
Рис. 13.
I этап.
В таблице 1. Показаны два стандарта и критерии , по которым мы будет выбирать оптимальный пользователю стандарт.
Таб. 1
Критерии/проекты | Проект А, Стандарт Н.323 | Проект В, Стандарт Н.324 |
Стоимость комплекта, руб. | 101233 | 1360 |
Скорость передачи данных | 64 Кбит/сек-2Мбит/сек | 64 Кбит/сек |
Качество принимаемой картинки | Хорошее | Плохое |
Кол-во участников | От 1 до 20 | От 1 до 3 |
II этап.
На основании попарного сравнения выставим оценки значимости критериев по отношению к основной цели в таблице 2.
Таб. 2
1 | 2 | 3 | 4 | ai | xi | |
1 | 1 | 2 | 5 | 4 | ||
2 | Ѕ | 1 | 7 | 4 | ||
3 | 1/5 | 1/7 | 1 | 2 | ||
4 | ј | ј | Ѕ | 1 |
Оценки выставлялись с помощью следующей шкалы:
1- равная важность
3- умеренное превосходство одного над другим
5- сильное превосходство
7- значительное превосходство
9- очень сильное превосходство
2, 4, 6, 8 – промежуточное решение между двумя соседними суждениями
На основании этой матрице определим значение компонентов собственного вектора матрицы аi
n – число каналов
а1 = 1*2*5*4 = 2,51
а2 = Ѕ*1*7*4 = 1,9
а3 = 1/5*1/7*1*2 = 0,07
а4 = ј*1/4*1/2*1= 0,42
сумма = 4,9
Определим вектор приоритетов для каждого из критериев:
хi = аi/ аi
х1 = 0.53
х2 = 0.38
х3 = 0.01
х4 = 0.08
Определим согласованность матрицы:
lmax = (1 + 1/2 + 1/5+ 1/4)*0.53 + ( 2 + 1 + 1/7 + 1/4)*0.38 + (5 + 7 + 1 + 1/2)*0.01 +
+ (4 + 4 + 5 + 1)*0.08 = 4*0,53+3,39*0,38+13,5*0,01+11*0,08 = 4,34
Сравним индекс согласованности с той величиной, которая получилась бы при случайном выборе количественных суждений их шкалы 1/9, 1/8, 1/7,…..9/.
Средние согласованности для случайных матриц разного порядка приведены в таблице 3.
ИС = (lmax – n)/(n-1) = (4,34 – 4)/(4 – 1) = 0,11
Таб. 3
Размер матрицы | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Случайная согласованность | 0 | 0 | 0,58 | 0,90 | 1,12 | 1,24 | 1,32 | 1,47 | 1,45 | 1,49 |
Если разделить ИС на случайную согласованность матрицы того же порядка, то получится отношение согласованности:
ОС = ИС/СС
ОС = 0,11 / 0,9 = 0,12
На третьем этапе снова используя метод попарного сравнивания оценим значимость альтернативных проектов по отношению к каждому критерию, как показано в таблице 4.
Таб. 4
... РФ по связи и информатизации РОСТОВСКИЙ-НА-ДОНУ ГОСУДАРСТВЕННЫЙ КОЛЛЕДЖ СВЯЗИ И ИНФОРМАТИКИ Допустить к защите Зав. отделением Ковальчук С.А . « « 2001г. “ВЫСОКОСКОРОСТНОЕ СОЕДИНЕНИЕ С СЕТЬЮ INTERNET ЧЕРЕЗ ISDN”ДИПЛОМНАЯ РАБОТАПОЯСНИТЕЛЬНАЯ ЗАПИСКАРуководитель дипломной работы Евсеенко Г.М. Нормоконтроль Чернышев Е.И. Рецензент Капыш С.П. Дипломник Новожилов ...
... этой, способна спасать жизнь или, по крайней мере, облегчать ее", - считают участники Networld+Interop 2000, одного из самых крупных в мире собраний профессионалов в области сетей, Internet и телекоммуникаций. На одном из демонстрационных 32-дюймовых экранов появляется ассистент профессора и начинает давать пояснения. Прямо за ней сидит человек чьё колено подлежит исследованию. Трехмерное ...
... 3. gov Правительственные учреждения (кроме военных) 4. mil Военные учреждения (армия, флот и т.д.) 5. org Прочие организации 6. net Сетевые ресурсы Когда Internet стала международной сетью, возникла необходимость предоставить зарубежным странам возможность контроля за именами находящихся в них систем. Для этой цели ...
... СУБД; можно управлять распределением областей внешней памяти, контролировать доступ пользователей к БД и т.д. в масштабах индивидуальной системы, масштабах ограниченного предприятия или масштабах реальной корпоративной сети. В целом, набор серверных продуктов одиннадцатого выпуска компании Sybase представляет собой основательный, хорошо продуманный комплект инструментов, которые можно ...
0 комментариев