2. Технология Frame Relay


Frame Relay первоначально замышлялся как протокол для использования в интерфейсах ISDN, и исходные предложения, представленные в CCITT в 1984 г., преследовали эту цель. Была также предпринята работа над Frame Relay в аккредитованном ANSI комитете по стандартам T1S1 в США.

Крупное событие в истории Frame Relay произошло в 1990 г., когда Cisco Systems, StrataCom, Northern Telecom и Digital Equipment Corporation образовали консорциум, чтобы сосредоточить усилия на разработке технологии Frame Relay и ускорить появление изделий Frame Relay, обеспечивающих взаимодействие сетей. Консорциум разработал спецификацию, отвечающую требованиям базового протокола Frame Relay, рассмотренного в T1S1 и CCITT; однако он расширил ее, включив характеристики, обеспечивающие дополнительные возможности для комплексных окружений межсетевого об'единения. Эти дополнения к Frame Relay называют обобщенно local management interface (LMI) (интерфейс управления локальной сетью).


Основы технологии


Frame Relay обеспечивает возможность передачи данных с коммутацией пакетов через интерфейс между устройствами пользователя (например, маршрутизаторами, мостами, главными вычислительными машинами) и оборудованием сети (например, переключающими узлами). Устройства пользователя часто называют терминальным оборудованием (DTE), в то время как сетевое оборудование, которое обеспечивает согласование с DTE, часто называют устройством завершения работы информационной цепи (DCE). Сеть, обеспечивающая интерфейс Frame Relay, может быть либо общедоступная сеть передачи данных и использованием несущей, либо сеть с оборудованием, находящимся в частном владении, которая обслуживает отдельное предприятие.

В роли сетевого интерфейса, Frame Relay является таким же типом протокола, что и Х.25. Однако Frame Relay значительно отличается от Х.25 по своим функциональным возможностям и по формату. В частности, Frame Relay является протоколом для линии с большим потоком информации, обеспечивая более высокую производительность и эффективность.

В роли интерфейса между оборудованием пользователя и сети, Frame Relay обеспечивает средства для мультиплексирования большого числа логических информационных диалогов (называемых виртуальными цепями) через один физический канал передачи, которое выполняется с помощью статистики. Это отличает его от систем, использующих только технику временного мультиплексирования (TDM) для поддержания множества информационных потоков. Статистическое мультиплексирование Frame Relay обеспечивает более гибкое и эффективное использование доступной полосы пропускания. Оно может использоваться без применения техники TDM или как дополнительное средство для каналов, уже снабженных системами TDM.

Другой важной характеристикой Frame Relay является то, что она использует новейшие достижения технологии передачи глобальных сетей. Более ранние протоколы WAN, такие как Х.25, были разработаны в то время, когда преобладали аналоговые системы передачи данных и медные носители. Эти каналы передачи данных значительно менее надежны, чем доступные сегодня каналы с волоконно-оптическим носителем и цифровой передачей данных. В таких каналах передачи данных протоколы канального уровня могут предшествовать требующим значительных временных затрат алгоритмам исправления ошибок, оставляя это для выполнения на более высоких уровнях протокола. Следовательно, возможны большие производительность и эффективность без ущерба для целостности информации. Именно эта цель преследовалась при разработке Frame Relay. Он включает в себя алгоритм проверки при помощи циклического избыточного кода (CRC) для обнаружения испорченных битов (из-за чего данные могут быть отвергнуты), но в нем отсутствуют какие-либо механизмы для корректирования испорченных данных средствами протокола (например, путем повторной их передачи на данном уровне протокола).

Другим различием между Frame Relay и Х.25 является отсутствие явно выраженного управления потоком для каждой виртуальной цепи. В настоящее время, когда большинство протоколов высших уровней эффективно выполняют свои собственные алгоритмы управления потоком, необходимость в этой функциональной возможности на канальном уровне уменьшилась. Таким образом, Frame Relay не включает явно выраженных процедур управления потоком, которые являются избыточными для этих процедур в высших уровнях. Вместо этого предусмотрены очень простые механизмы уведомления о перегрузках, позволяющие сети информировать какое-либо устройство пользователя о том, что ресурсы сети находятся близко к состоянию перегрузки. Такое уведомление может предупредить протоколы высших уровней о том, что может понадобиться управление потоком.

Стандарты Current Frame Relay адресованы перманентным виртуальным цепям (PVC), определение конфигурации которых и управление осуществляется административным путем в сети Frame Relay. Был также предложен и другой тип виртуальных цепей - коммутируемые виртуальные цепи (SVC). Протокол ISDN предложен в качестве средства сообщения между DTE и DCE для динамичной организации, завершения и управления цепями SVC.


Форматы блока данных

Формат блока данных изображен на Рис. 2.2.1. Флаги ( flags ) ограничивают начало и конец блока данных. За открывающими флагами следуют два байта адресной ( address ) информации. 10 битов из этих двух байтов составляют идентификацию (ID) фактической цепи (называемую сокращенно DLCI от "data link connection identifier").


Длина поля, в байтах 1 2 Variable 2 1

Flag Address Data FCS Flag

Рис. 2.2.1 Кадр Frame Relay


Центром заголовка Frame Relay является 10-битовое значение DLCI. Оно идентифицирует ту логическую связь, которая мультиплексируется в физический канал. В базовом режиме адресации (т.е. не расширенном дополнениями LMI), DLCI имеет логическое значение; это означает, что конечные усторойства на двух противоположных концах связи могут использовать различные DLCI для обращения к одной и той же связи. На рис. 2.2.2 представлен пример использования DLCI при адресации в соответствии с нерасширенным Frame Relay.

Рис. 2.2.2 предполагает наличие двух цепей PVC: одна между Aтлантой и Лос-Анджелесом, и вторая между Сан Хосе и Питтсбургом. Лос Анджелес может обращаться к своей PVC с Атлантой, используя DLCI=12, в то время как Атланта обращается к этой же самой PVC, используя DLCI=82. Аналогично, Сан Хосе может обращаться к своей PVC с Питтсбургом, используя DLCI=62. Сеть использует внутренние патентованные механизмы поддержания двух логически значимых идентификаторов PVC различными.

В конце каждого байта DLCI находится бит расширенного адреса (ЕА). Если этот бит единица, то текущий байт является последним байтом DLCI. В настоящее время все реализации используют двубайтовый DLCI, но присутствие битов ЕА означает, что может быть достигнуто соглашение об использовании в будущем более длинных DLCI.

Бит C/R, следующий за самым значащим байтом DLCI, в настоящее время не используется.


Рис. 2.2.2 Адресация Frame Relay


И наконец, три бита в двубайтовом DLCI являются полями, связанными с управлением перегрузкой. Бит "Уведомления о явно выраженной перегрузке в прямом направлении" (FECN) устанавливается сетью Frame Relay в блоке данных для того, чтобы сообщить DTE, принимающему этот блок данных, что на тракте от источника до места назначения имела место перегрузка. Бит "Уведомления о явно выраженной прегрузке в обратном направлении" (BECN) устанавливается сетью Frame Relay в блоках данных, перемещающихся в направлении, противоположном тому, в котором перемещаются блоки данных, встретившие перегруженный тракт. Суть этих битов заключается в том, что показания FECN или BECN могут быть продвинуты в какой-нибудь протокол высшего уровня, который может предпринять соответствующие действия по управлению потоком. (Биты FECN полезны для протоколов высших уровней, которые используют управление потоком, контролируемым пользователем, в то время как биты BECN являются значащими для тех протоколов, которые зависят от управления потоком, контролируемым источником ("emitter-controlled").

Бит "приемлемости отбрасывания" (DE) устанавливается DTE, чтобы сообщить сети Frame Relay о том, что какой-нибудь блок данных имеет более низшее значение, чем другие блоки данных и должен быть отвергнут раньше других блоков данных в том случае, если сеть начинает испытывать недостаток в ресурсах. Т.е. он представляет собой очень простой механизм приоритетов. Этот бит обычно устанавливается только в том случае, когда сеть перегружена.



Информация о работе «Маршрутизаторы Cisco в сетях Frame Relay»
Раздел: Информатика, программирование
Количество знаков с пробелами: 44901
Количество таблиц: 2
Количество изображений: 6

Похожие работы

Скачать
58764
0
7

... может применяться высококачественная витая пара. Рис. 3. Структурная схема сети Frame Relay. На рисунке представлена структурная схема сети Frame Relay, где изображены основные элементы: DTE (Data Terminal Equipment) – аппаратура передачи данных (маршрутизаторы, мосты, ПК). DCE (Data Circuit-Terminating Equipment) – оконечное оборудование канала передачи данных (телекоммуникационное ...

Скачать
65710
1
9

... туннелирования показан на рис. 6. Рис. 6. Туннелирование с использованием GRE Две локальные сети, использующие протокол IPX, разделены некоторой сетью, работающей по протоколу IP. При использовании GRE маршрутизаторы Cisco, находящиеся на краях этой сети (назовем ее IP WAN) могут инкапсулировать дейтаграммы IPX в пакеты IP для передачи первых через сеть IP. Внутри туннелированных сетей сетевые ...

Скачать
48833
4
0

... подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети. Для начала работы маршрутизатора OSPF нужен минимум информации - IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей ...

Скачать
194201
10
10

... . Предлагается, для самого дешевого решения, на каждый из клиентских компьятеров установить ОС Windows 95. Администрация Владимирской области обладает лицензией на использование данного продукта. Фирма Shiva, крупнейший поставщик оборудования и программного обеспечения для корпоративных территориальных сетй связи, помогла фирме Microsoft внедрить в Windows 95 функции удаленного доступа. ...

0 комментариев


Наверх