1.2. Преобразователи АЦП и ЦАП
Наиболее естественным способом "подружить" цифровой компьютер с его "рваной" импульсной системой передачи информации, и непрерывный реальный мир является использование преобразователей аналоговых сигналов в цифровые и обратно, которые и называются аналогово-цифровыми и цифро-аналоговыми преобразователями - АЦП и ЦАП. Первый получает непрерывный аналоговый сигнал и постоянно выдает поток цифровых сигналов, второй действует наоборот. При этом говорят, что АЦП кодирует аналоговый сигнал, а ЦАП - декодирует его. В англоязычной литературе используются обозначения ADC и DAC, а также codec (coder/decoder).
Для преобразования в цифровой код аналоговый сигнал приходится подвергать дискретизации - разбиению на фиксированные участки во времени и на ряд фиксированных величин - по уровню. Каждый элементарный участок сигнала кодируется одним числом, величина которого пропорциональна среднему уровню сигнала на этом участке; такое число называется отсчетом. Числа появляются на выходе АЦП синхронно с изменением сигнала на входе; точность преобразования будет тем выше, чем выше частота следования отсчетов и чем больше используется фиксированных значений уровня. Частота следования отсчетов называется частотой дискретизации, а диапазон значений отсчета определяется разрядностью его двоичного представления.
Выбор частоты дискретизации важен в первую очередь для передачи частотного диапазона сигнала - при слишком низкой частоте звук становится глухим и неразборчивым. Чаще всего для хорошей передачи звука достаточно частоты, вдвое большей максимальной частоты исходного сигнала, хотя для достижения высокого качества используется трех - пятикратное превышение. А разрядность влияет прежде всего на количество искажений и шумов, вносимых в звук - при недостаточной точности отсчетов звук становится резким и неприятным, как внутри металлической трубы.
В популярных сейчас бытовых проигрывателях компакт-дисков используется частота дискретизации 44.1 кГц и отсчеты в 16 двоичных разрядов (65536 фиксированных уровней). В цифровых телефонных линиях применяется 8-разрядная (256 уровней) оцифровка на 8 кГц, а в студийных системах обработки звука - 24-разрядная (16777216 уровней) с частотой 96 кГц. Понятно, что с ростом частоты дискретизации и разрядности отсчета растет и объем данных, занимаемый звуком. Например, один компакт-диск вмещает 74 минуты стереозвучания, однако при записи на нем звука в монофоническом телефонном формате время непрерывного звучания составит более суток.
Самый простой ЦАП делается при помощи так называемой резистивной матрицы, когда все разряды двоичного числа, представляющего отсчет, через резисторы с различным сопротивлением сводятся в одну точку, причем сопротивление резисторов падает с ростом старшинства разрядов двоичного числа. Таким образом, изменение старшего разряда из 0 в 1 и наоборот будет вносить в линию максимальное изменение напряжения, а то же самое в младшем разряде - минимальное, и в случае 8 разрядов разница составит в точности 256 раз. При последовательном переборе всех чисел от 0 до 255 сигнал на выходе будет ступенчато изменяться от нуля до максимума - в 256 раз более плавно, чем простой цифровой переход от 0 к 1.
Лет десять назад на компьютерах IBM PC подобные 8-разрядные ЦАП делались при помощи параллельного порта принтера, имеющего как раз 8 линий данных, а при использовании дополнительных линий управления - и более качественный 12-разрядный. Выводя из программы в порт отсчеты с нужной скоростью, можно получить достаточно чистый звук, сравнимый по качеству с телефоном или дешевым магнитофоном.
Сейчас выпускается широчайший ассортимент звуковых адаптеров, или карт, для всех видов персональных компьютеров, а во многих моделях они являются компонентом системной платы. Современный звуковой адаптер содержит 16-разрядные стереофонические ЦАП и АЦП, работающие на частоте 5..48 кГц, которые передают и получают цифровой звук по каналам прямого доступа к памяти (DMA), без прямого участия программ, которым остается только вовремя забирать готовый оцифрованный фрагмент с АЦП, или подавать очередной цифровой фрагмент на ЦАП. Многие адаптеры могут записывать и воспроизводить звук одновременно, и программа при должном быстродействии может синхронно воспроизводить записанный звук в уже обработанном виде.
1.3. Процессоры DSP (Digital Signal Processing)
В принципе DSP (Рис.3) нужен чтобы разгрузить центральный процессор (CPU) компьютера, да и вообще поменьше от него зависеть. Это делает работу платы устойчивей и позволяет избежать многих проблем совместимости с разными компьютерами.
Обработка цифрового звука - отдельная и весьма обширная область, которая, по
Процессор-DSP.
сути, сводится к выполнению над числами-отсчетами тех же математических операций, которые в аналоговых устройствах выполняются электронными схемами. Например, усилению или ослаблению соответствует умножение или деление отсчетов, смешиванию двух сигналов - попарное сложение их отсчетов, фазовому сдвигу - задержка одних отсчетов относительно других. Единственная проблема состоит в том, что для выполнения сложных преобразований вроде фильтрования или модуляции требуется очень большое число элементарных числовых операций, которое рядовой компьютер не в состоянии делать синхронно с поступающим сигналом (как говорят - в реальном времени). В таких случаях либо применяются специальные цифровые сигнальные процессоры (DSP), либо обработка проводится основным процессором, но после предварительной записи звука в память или на жесткий диск, с воспроизведением оттуда после окончания обработки. Эта так называемая нелинейная обработка занимает больше времени и не позволяет тут же слышать результат, однако никак не ограничена по сложности и глубине воздействия на звук.
Частным случаем обработки является простой монтаж фонограмм, с которым постоянно сталкиваются операторы самых различных звуковых студий. То, что на обычном магнитофоне делается за минуты, часы и дни путем многократной перезаписи с ленты на ленту, даже на самом простом компьютере занимает считанные секунды или часы, благодаря полному визуальному контролю и точности вплоть до одного цифрового отсчета (при 44.1 кГц - 23 мкс).
Однако компьютер способен не только сохранить и воспроизвести однажды записанный в него звук, даже после цифровой обработки - он может создавать совершенно новые звуки при помощи аппаратного или программного синтеза. Простейший метод синтеза состоит в генерации серии отсчетов и циклическом их воспроизведении, в результате чего получается периодический (тональный) звуковой сигнал. Например, при воспроизведении значений функции sin (x), вычисленных с некоторым шагом в границах периода, получается чистый синусоидальный звуковой сигнал с мягким звучанием и четкой музыкальной высотой; при усложнении вычислительной функции звуковые колебания будут повторять ее график - с точностью до параметров оцифровки и погрешностей ЦАП. График можно и нарисовать прямо на экране при помощи мыши; при этом плавному графику будут соответствовать более мягкие, глухие звуки, а крутому - более резкие, яркие и звонкие.
Если взять какой-либо физический процесс, приводящий к появлению звука - разряд молнии, шум ветра или колебания скрипичных струн - то всегда можно разработать достаточно точную математическую модель этого явления, которая сведется к системе уравнений. Решая эти уравнения, можно получить график звуковых колебаний, возникающих в этом процессе, и затем воспроизвести их. Подобным образом был получен предполагаемый звук московского Царь-Колокола при помощи только его наружных измерений и структурного анализа сплава. Этот метод физического моделирования - самый точный для имитации реальных звуков, однако он же - самый трудоемкий и длительный.
... , при мне" с простым безыскусным напевом Глинки, услышанным от Грибоедова, и более сложное драматическое решение в романсе - восточной поэме Рахманинова, полной элегической тоски и одиночества. Музыкальная пушкиниана ХХ века также весьма обширна и интересна. В числе наиболее значительных произведений - балеты "Медный всадник" Глиэра, одна из главных тем которого поистине стала "гимном великому ...
... песен, прибауток, считалок для исполнения на музыкальных инструментах; для нориолизации просодической стороны речи при импровизации мелодичных и ритмических подпевок. В работе с учащимися начальных классов в коррекционно-развивающем обучении могут быть использованы лишь самые простые инструменты. Это музыкальные инструменты ударной группы как чисто ритмические, не обладающие определенной высотой ...
... нравственных качеств личности ребенка, закладывает первоначальные основы общей культуры будущего человека. II. Педагогические условия реализации видов деятельности детей в детском саду 2.1 Методы музыкального обучения в детском саду Основной вид музыкальной деятельности, которому принадлежит ведущая роль в реализации познавательной и коммуникативной функции музыки – ее восприятие ...
... работы над музыкальным произведением, уровнем эмоционально-поведенческих расстройств. 2. Специфика музыкальной работы в детском доме для умственно отсталых детей-сирот и детей, лишенных попечения родителей Решению задач музыкального образования помогает использование разнообразных форм организации музыкальной деятельности, каждая из которых обладает определенными возможностями (см. схему). ...
0 комментариев