Цифровое видео на PC 1
1.В начале был аналог 2
2.Цифровое видео 2
3.Сжатие видео 4
4.Контроль параметров цифрового видео. 6
5.Анимационные контроллеры и системы нелинейного видео-монтажа (недостатки традиционного метода записи видео и преимущества систем не линейного монтажа) 7
Что такое MPEG? 7
Структура MPEG-последовательности. 7
Использование MPEG 8
1. MPEG-1 8
1.1 Видеокиоски. 8
1.2 Видео по требованию (Video on Demand) . 9
1.3 Видео по телефону. 9
1.4 Обучение. 9
1.5 Презентации. 9
1.6 Видеобиблиотеки. 9
2 MPEG-2 9
2.1 Кабельное телевидение (CATV: Cable Television) 10
2.2 Направленное спутниковое вещание (DBS: Direct Broadcast Satellite). 10
2.3 ТВЧ – телевидение высокой четкости (HDTV: High-Definition Television) 10
Заключение. 10
Чем отличается MPEG-1 и MPEG-2. 10
Различия между MPEG и QuickTime с Indeo 11
Носители цифрового видео. 11
Video-CD 11
DVD 11
Аппаратные средства для записи видео в формате MPEG. 11
MPEGator Advanced 11
Broadway. 12
Genie 13
Эта система вполне пригодна для работы, и хотя она не может похвастаться удобством и простотой интерфейса, как BroadWay, или обилием функций, как MPEGator, низкая цена делает Genie очень заманчивым приобретением. 14
Системы нелинейного видеомонтажа. 14
1.MAX: Matrox Animation Xpress 14
2.TARGA 1000 15
3.TARGA 2000 15
4.TARGA® 2000 DTX 16
5.DPS PAR: Personal Animation Recorder 17
6.DPS PVR: Perception Video Recorder 18
7.MIRO VIDEO DC1+ 19
8.MIRO VIDEO DC20 19
9.MIRO VIDEO DC30 20
10.FAST AV Master 21
11.FAST FPS 60 22
12.FAST Movie Machine II 23
Профессиональные видео-комплексы 23
1.Matrox Studio 24
Заключение. 25
Список использованной литературы. 25
Для понимания ситуации, которая сложилась в сфере профессионального видео-монтажа, в первую очередь требуется понять основные различия между видео вещательного качества для телевидения и видео, как оно реализовывается на персональных компьютерах. В течение многих лет на телевидении вырабатывались профессиональные стандарты на высококачественное видео. Эти усилия и жесткие требования привели к появлению многих технологических новшеств. Поэтому определение и характеристики цифрового видео вещательного качества существенно отличается от того, которое принято среди компьютерных профессионалов.
Самым ранним методом передачи видеосигналов является аналоговый метод. Одним из первых видеоформатов на основе этого принципа стал композитный видеосигнал. Композитное аналоговое видео комбинирует все видеокомпоненты (яркость, цвет, синхронизацию и т. п.) в один сигнал. Из-за объединения этих элементов в одном сигнале качество композитного видео далеко от совершенства. В результате мы имеем неточную передачу цвета, недостаточно "чистую" картинку и другие факторы потери качества.
Композитное видео быстро уступило дорогу компонентному видео, в котором различные видеокомпоненты представлены как независимые сигналы. Дальнейшие усовершенствования этого формата привели к появлению различные его вариаций: S-Video, RGB, Y, Pb, Pr и др.
Тем не менее, все вышеперечисленные форматы остаются аналоговыми по своей сути, и, следовательно, обладают одним существенным недостатком: при копировании дубль всегда уступает по качеству оригиналу. Потеря качества при копировании видеоматериала аналогична фотокопированию, когда копия никогда не бывает такой же четкой и яркой, как оригинал.
Недостатки, присущие аналоговому способу воспроизведения видео, в конце концов привели к разработке цифрового видеоформата. На смену аналоговому видео пришло цифровое. В области профессионального видео применяется несколько цифровых видеоформатов: D1, D2, Digital BetaCam и др. В отличие от аналогового видео, качество которого падает при копировании, каждая копия цифрового видео идентична оригиналу.
Хотя современный видеоряд базируется на цифровой основе, практически все цифровые видеоформаты до сих пор в качестве носителя исходного сигнала используют пленку с последовательным доступом. Поэтому большинству профессионалов в области видео все еще привычней работать с пленкой, чем с компьютером.
Конечно, пленка в качестве источника данных все еще остается более предпочтительной, чем жесткий диск компьютера, поскольку вмещает значительно больший объем данных. Но зато для цифрового видеомонтажа использование компьютеров дает ряд существенных преимуществ: не только обеспечивает прямой доступ к любому видеофрагменту (что невозможно при работе с пленкой, поскольку к необходимым участкам можно добраться лишь последовательно просматривая видеоматериал), но и предполагает широкие возможности обработки изображения (редактирование, сжатие).
Это достаточно веские причины для перехода видеопроизводства с традиционного оборудования на компьютерное.
Компьютерное цифровое видео представляет собой последовательность цифровых изображений и связанный с ними звук. Элементы видео хранятся в цифровом формате.
Существует множество способов захвата, хранения и воспроизведения видео на компьютере. С появлением компьютерного цифрового видео стихийно стали возникать самые разнообразные форматы представления видеоданных, что поначалу привело к некоторой путанице и вызвало проблемы совместимости. Однако в последние годы благодаря усилиям Международной организации по стандартизации (ISO -- International Standards Organisation)1 выработаны единые стандарты на форматы видеоданных, которые мы позже рассмотрим.
2.1.Основные характеристики цифрового видеоЦифровое видео характеризуется четырьмя основными факторами: частота кадра (Frame Rate), экранное разрешение (Spatial Resolution), глубина цвета (Color Resolution) и качество изображения (Image Quality).
Частота кадра (Frame Rate). Стандартная скорость воспроизведения видеосигнала -- 30 кадров/с (для кино этот показатель составляет 24 кадра/с). Каждый кадр состоит из определенного количества строк, которые прорисовываются не последовательно, а через одну, в результате чего получается два полукадра, или так называемых "поля". Поэтому каждая секунда аналогового видеосигнала состоит из 60 полей (полукадров). Такой процесс называется interlaced видео.
Между тем монитор компьютера для прорисовки экрана использует метод "прогрессивного сканирования" (progressive scan), при котором строки кадра формируются последовательно, сверху вниз, а полный кадр прорисовывается 30 раз каждую секунду. Разумеется, подобный метод получил название non-interlaced видео. В этом заключается основное отличие между компьютерным и телевизионным методом формирования видеосигнала.
Глубина цвета (Color Resolution). Этот показатель является комплексным и определяет количество цветов, одновременно отображаемых на экране. Компьютеры обрабатывают цвет в RGB-формате (красный-зеленый-синий), в то время как видео использует и другие методы. Одна из наиболее распространенных моделей цветности для видеоформатов -- YUV. Каждая из моделей RGB и YUV может быть представлена разными уровнями глубины цвета (максимального количества цветов).
Для цветовой модели RGB обычно характерны следующие режимы глубины цвета: 8 бит/пиксель (256 цветов), 16 бит/пиксель (65,535 цветов) и 24 бит/пиксель (16,7 млн. цветов). Для модели YUV применяются режимы: 7 бит/пиксель (4:1:1 или 4:2:2, примерно 2 млн. цветов), и 8 бит/пиксель (4:4:4, примерно 16 млн. цветов).
Экранное разрешение (Spatial Resolution). Еще одна характеристика - экранное разрешение, или, другими словами, количество точек, из которых состоит изображение на экране. Так как мониторы PC и Macintosh обычно рассчитаны на базовое разрешение в 640 на 480 точек (пикселей), многие считают, что такой формат является стандартным. К сожалению, это не так. Прямой связи между разрешением аналогового видео и компьютерного дисплея нет.
Стандартный аналоговый видеосигнал дает полноэкранное изображение без ограничений размера, так часто присущих компьютерному видео. Телевизионный стандарт NTSC (National Television Standards Committe), разработан Национальным комитетом по телевизионным стандартам США. Используемый в Северной Америке и Японии, он предусматривает разрешение 768 на 484. Стандарт PAL (Phase Alternative), распространенный в Европе, имеет несколько большее разрешение -- 768 на 576 точек.
Поскольку разрешение аналогового и компьютерного видео различается, при преобразовании аналогового видео в цифровой формат приходится иногда масштабировать и уменьшать изображение, что приводит к некоторой потере качества.
Качество изображения (Image Quality). Последняя, и наиболее важная характеристика - это качество видеоизображения. Требования к качеству зависят от конкретной задачи. Иногда достаточно, чтобы картинка была размером в четверть экрана с палитрой из 256-ти цветов (8 бит), при скорости воспроизведения 15 кадров/с. В других случаях требуется полноэкранное видео (768 на 576) с палитрой в 16,7 млн. цветов (24 бит) и полной кадровой разверткой (24 или 30 кадров/с).
Следует исходить из разумной достаточности при определении необходимой степени сжатия. При этом необходимо учитывать, как четыре характеристики (частота кадра, экранное разрешение, глубина цвета и качество изображения) влияют на объем и качество видео. Вы должны ясно себе представлять, какую "цену" придется заплатить за качественное изображение. Чем больше глубина цвета, выше разрешение и лучше качество, тем большая производительность компьютера вам потребуется, не говоря уж о громадных объемах дискового пространства, необходимого под цифровое видео. Учитывая эти характеристики, можно выбрать оптимальный коэффициент сжатия. Надо отметить, что в профессиональном видео действует простое правило - чем ниже коэффициент сжатия, тем лучше.
Простейшие расчеты показывают, что 24-битное цветное видео, при разрешении 640 на 480 и частоте 30 кадров/с потребует передачи 26 Мбайт данных в секунду! Этот поток не только выходит за рамки пропускной способности компьютерной шины, но и моментально "съест" любое дисковое пространство. Для наглядности приводим здесь наши расчеты.
... группы по различным аспектам DVD-технологии. На ряд спецификаций приняты международные стандарты. В момент своего появления на свет технология DVD была новым способом записи и просмотра именно видео. Поэтому вначале официально DVD расшифровывали как Digital Video Disk, цифровой видеодиск. Было также много неофициальных вариантов. Dead, Very Dead (Мертвый, Совсем Мертвый) — так расшифровывали ...
... живого объемного изображения с эпизодами, прошедшими цифровую обработку еще более удорожают производство стереофильмов. «Преимущества для демонстраторов вполне определенны: в крупных мультиплексах цифровая технология обеспечивает лучшее управление контентом. Облегчается доставка контента в кинотеатры и сокращается риск порчи копий. Переход от механических устройств к электронным обеспечивает ...
... возможность гибко наращивать скорость, не меняя оборудование, в зависимости от своих потребностей. 4. Перспективы развития цифровых линий для информационных сетей В России случилось, так что любой канал доступа в Интернет, превосходящий по пропускной способности Dial-Up, называют выделенным. На самом деле выделенная линия это - прямой канал к провайдеру, доступный всего одному пользователю. ...
... информация должна поступать в декодер при восстановлении звукового сигнала. Декодер преобразует серию сжатых мгновенных спектров сигнала в обычную цифровую волновую форму. Audio MPEG - группа методов сжатия звука, стандартизованная MPEG (Moving Pictures Experts Group - экспертной группой по обработке движущихся изображений). Методы Audio MPEG существуют в виде нескольких типов - MPEG-1, MPEG-2 и ...
0 комментариев