2.7. Примеры.

 

Представляем несколько примеров использования реляционного исчисления кортежей для формулирования запросов.

Ø  Определить имена поставщиков детали с номером ‘P2’  

SX

WHERE EXISTS SPX (SPX.S# = SX.S# AND

SPX.P# = P# (‘P2’) )

Обратите внимание на использование имени переменной кортежа в прототипе кортежа. Этот пример является сокращённой записью следующего выражения.

(SX.S#, SX.NAME, SX.STATUS, SX.CITY)

WHERE EXISTS SPX (SPX.S# = SX.S# AND

SPX.P# = P# (‘P2’) )

Этот же пример решённый средствами реляционной алгебры выглядит так

( (SP JOIN S) WHERE P# =’P2’) {SNAME}

Ø  Определить имена поставщиков по крайней мере одной красной детали

SX.SNAME

WHERE EXISTS SPX (SX.S# = SPX.S# AND

EXISTS PX (PX.P# = SPX.P# AND

PX.COLOR = COLOR (‘Red’) ) )

Этот же пример решённый средствами реляционной алгебры выглядит так

( ( ( P WHERE COLOR = COLOR (‘Red’) )

JOIN SP) {S#} JOIN S) {SNAME}

3. Сравнительный анализ реляционного исчисления и реляционной алгебры.

В начале утверждалось, что реляционная алгебра и реляционное исчисление в своей основе эквивалентны. Осудим это утверждение более подробно. Вначале Кодд показал, что алгебра по крайней мере мощнее исчисления. Он сделал это, придумав алгоритм, называемый алгоритмом редукции Кодда, с помощью которого любое выражение исчисления можно преобразовать в семантически эквивалентное выражение алгебры. Мы не станем приводить здесь этот алгоритм полностью, а ограничимся довольно сложным примером, иллюстрирующим в общих чертах, как он функционирует.

S# SNAME STATUS CITY
S1 Smith 20 London
S2 Jones 10 Paris
S3 Black 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens
S# P# J# QTY
S1 P1 J1 200
S1 P1 J4 700
S2 P3 J1 400
S2 P3 J2 200
S2 P3 J3 200
S2 P3 J4 500
S2 P3 J5 600
S2 P3 J6 400
S2 P3 J7 800
S2 P5 J2 100
S3 P3 J1 200
S3 P4 J2 500
S4 P6 J3 300
S4 P6 J7 300
S5 P2 J2 200
S5 P2 J4 100
S5 P5 J5 500
S5 P5 J7 100
S5 P6 J2 200
S5 P1 J4 100
S5 P3 J4 200
S5 P4 J4 800
S5 P5 J4 400
S5 P6 J4 500
P# PNAME COLOR WEIGHT CITY
P1 Nut Red 12.0 London
P2 Bolt Green 17.0 Paris
P3 Screw Blue 17.0 Rome
P4 Screw Red 14.0 London
P5 Cam Blue 12.0 Paris
P6 Cog Red 19.0 London

 

J# JNAME CITY
J1 Sorter Paris
J2 Display Rome
J3 OCR Athens
J4 Console Athens
J5 RAID London
J6 EDS Oslo
J7 Tape London


S-детали, P- поставщики, J- проекты, SPJ- поставки.

Рассмотрим теперь следующий запрос: «Получить имена поставщиков и названия городов, в которых находятся поставщики деталей по крайней мере для одного проекта в Афинах, поставляющих по крайней мере 50 штук каждой детали». Выражение реляционного исчисления для этого запроса следующее.

(SX.SNAME, SX.CITY) WHERE EXISTS JX FORALL PX EXISTS SPJX

( JX.CITY = ‘Athens’ AND

JX.J# = SPJX.J# AND

PX.P# = SPJX.P# AND

 SX.S# = SPJX.S# AND

SPJX.QTY ≥ QTY (50) )

Здесь SX, PX, JX и SPJX ─ переменные кортежей, получающие свои значения из отношений S, P, J и SPJ соответственно. Теперь покажем, как можно вычислить это выражение, чтобы достичь требуемого результата.

Этап 1. Для каждой переменной кортежа выбираем её область значений (т.е. набор всех значений для переменной), если это возможно. Выражение «выбираем, если возможно» подразумевает, что существует условие выборки, встроенное в фразу WHERE, которую можно использовать, чтобы сразу исключить из рассмотрения некоторые кортежи. В нашем случае выбираются следующие наборы кортежей.

SX : Все кортежи отношения S 5 кортежей

PX : Все кортежи отношения P 6 кортежей

JX :  Кортежи отношения J, в которых CITY = ‘Athens’ 2 кортежа

SPJX : Кортежи отношения SPJ, в которых CITY ≥ 50 24 кортежа

Этап 2. Строим декартово произведение диапазонов, выбранных на первом этапе. Вот результат.

S# SN

STA

TUS

CITY P# PN CO-LOR WEIGHT CITY J# JN CITY S# P# J# QTY
S1 Sm 20 Lon P1 Nt Red 12.0 Lon J3 OR Ath S1 P1 J1 200
S2 Sm 20 Lon P1 Nt Red 12.0 Lon J3 OR Ath S1 P1 J4 700
.. .. .. .. .. .. .. .. .. ..

(И т.д.) Всё произведение содержит 5*6*2*24=1440 кортежей.

Замечание. Для экономии места здесь это отношение полностью не приводится. Мы также не переименовывали атрибуты (хотя это следовало бы сделать во избежание двусмысленности), просто расположили их в таком порядке, чтобы было видно, какой атрибут S# относится, например, к отношению S, а какой ─ к отношению SPJ. Это также сделано для сокращения изложения.

Этап 3. Осуществляем выборку из построенного на этапе 2 произведения в соответствии с частью «условие соединения» фразы WHERE. В нашем примере эта часть выглядит следующим образом.

JX.J# = SPJX.J# AND PX.P# = SPJX.P# AND SX.S# = SPJX.S#

Поэтому из произведения исключаются кортежи, для которых значение атрибута S# из отношения поставщиков не равно значению атрибута S# из отношения поставок, значение атрибута P# из отношения деталей не равно значению атрибута P# из отношения поставок, значение атрибута J# из отношения проектов не равно значению атрибута J# из отношения поставок. Затем получаем подмножество декартова произведения, состоящее (как оказалось) только из десяти кортежей.

S# SN

STA

TUS

CI-TY P# PN CO-LOR WEIGHT CITY J# JN CI-TY S# P# J# QTY
S1 Sm 20 Lon P1 Nt Red 12.0 Lon J4 Cn Ath S1 P1 J4 700
S2 Jo 10 Par P3 Sc Blue 17.0 Rom J3 OR Ath S2 P3 J3 200
S2 Jo 10 Par P3 Sc Blue 17.0 Rom J4 Cn Ath S2 P3 J4 200
S4 Cl 20 Lon P6 Cg Red 19.0 Lon J3 OR Ath S4 P6 J3 300
S5 Ad 30 Ath P2 Bt Green 17.0 Par J4 Cn Ath S5 P2 J4 100
S5 Ad 30 Ath P1 Nt Red 12.0 Lon J4 Cn Ath S5 P1 J4 100
S5 Ad 30 Ath P3 Sc Blue 17.0 Rom J4 Cn Ath S5 P3 J4 200
S5 Ad 30 Ath P4 Sc Red 14.0 Lon J4 Cn Ath S5 P4 J4 800
S5 Ad 30 Ath P5 Cm Blue 12.0 Par J4 Cn Ath S5 P5 J4 400
S5 Ad 30 Ath P6 Cg Red 19.0 Lon J4 Cn Ath S5 P6 J4 500

(Это отношение, конечно, представляет собой эквивалент результата операции соединения.)

Этап 4. Применяем кванторы в порядке справа налево следующим образом.

-   Для квантора EXISTS RX (где RX ─ переменная кортежа, принимающая значение на некотором отношении r) проецируем текущий промежуточный результат, чтобы исключить все атрибуты отношения r.

-   Для квантора FORALL RX делим текущий промежуточный результат на отношение «выбранной области значений», соответствующее RX, которое было получено выше. При выполнении этой операции также будут исключены все атрибуты отношения r.

Замечание. Под делением здесь подразумевается оригинальная операция деления Кодда.

В нашем примере имеем следующие кванторы.

EXISTS JX FORALL PX EXISTS SPJX

Значит, выполняются следующие операции.

1. (EXISTS SPJX) Проецируем, исключая атрибуты отношения SPJ (SPJ.S#,

 SPJ.P#, SPJ.J# и SPJ.QTY). В результате получаем следующее.

S# SN

STA

TUS

CI-TY P# PN CO-LOR WEIGHT CITY J# JN CI-TY
S1 Sm 20 Lon P1 Nt Red 12.0 Lon J4 Cn Ath
S2 Jo 10 Par P3 Sc Blue 17.0 Rom J3 OR Ath
S2 Jo 10 Par P3 Sc Blue 17.0 Rom J4 Cn Ath
S4 Cl 20 Lon P6 Cg Red 19.0 Lon J3 OR Ath
S5 Ad 30 Ath P2 Bt Green 17.0 Par J4 Cn Ath
S5 Ad 30 Ath P1 Nt Red 12.0 Lon J4 Cn Ath
S5 Ad 30 Ath P3 Sc Blue 17.0 Rom J4 Cn Ath
S5 Ad 30 Ath P4 Sc Red 14.0 Lon J4 Cn Ath
S5 Ad 30 Ath P5 Cm Blue 12.0 Par J4 Cn Ath
S5 Ad 30 Ath P6 Cg Red 19.0 Lon J4 Cn Ath

2.(FORALL PX) Делим полученный результат на отношение P. В результате имеем следующее.

S# SN STATUS CITY J# JNAME CITY
S5 Adams 30 Athens J4 Console Athens

(Теперь у нас есть место, чтобы показать отношение полностью, без сокращений.)

1.(EXISTS JX) Проецируем, исключая атрибуты отношения J (J.J#, J.NAME и J.CITY). В результате получаем следующее.

S# SN STATUS CITY
S5 Adams 30 Athens

 Этап 5. Проецируем результат этапа 4 в соответствии со спецификациями в прототипе кортежа. В нашем примере имеет следующий вид.

(SX.SNAME, SX.CITY)

Значит, конечный результат вычислений будет таков.

SNAME CITY
Adams Athens

Из сказанного выше следует, что начальное выражение исчисления семантически эквивалентно определённому вложенному алгебраическому выражению, и, если быть более точным, это проекция от проекции результата деления проекции выборки из произведения четырёх выборок (!).

И хотя многие подробности в пояснениях были упущены, этот пример вполне адекватно отражает общую идею работы алгоритма редукции.

Теперь моно объяснить одну из причин (и не только одну) определения Коддом ровно восьми алгебраических операторов. Эти восемь реляционных операторов образуют удобный целевой язык как средство возможной реализации реляционного исчисления. Другими словами, для заданного языка, построенного на основе реляционного исчисления (подобно языку QUEL), один из возможных подходов реализации заключается в том, что организуется получение запроса в том виде, в каком он представляется пользователем. По существу, он будет являться просто выражением реляционного исчисления, к которому затем можно будет применить определённый алгоритм редукции, чтобы получить эквивалентное алгебраическое выражение. Это алгебраическое выражение, конечно, будет включать набор алгебраических операций, которые по определению реализуемы по самой своей природе.

Также следует отметить, что восемь алгебраических операторов Кодда являются мерой оценки выразительной силы любого языка баз данных.

Некоторый язык принято называть реляционно полным, если он по своим возможностям по крайней мере не уступает реляционному исчислению. Иначе говоря, любое отношение, которое можно определить с помощью реляционного исчисления, можно определить и с помощью некоторого выражения рассматриваемого языка. («Реляционно полный» значит «не уступающий по возможностям реляционной алгебре», а не исчислению, но это одно и то же, как мы вскоре убедимся. По сути, из самого существования алгоритма редукции Кодда немедленно следует, что реляционная алгебра обладает реляционной полнотой.)

Реляционную полноту можно как основную меру выразительной силы языков баз данных в самом общем случае. В частности, так как реляционное исчисление и реляционная алгебра обладают реляционной полнотой, они могут служить основой для проектирования не уступающих им по выразительности языков без необходимости выполнять пересортировку для организации циклов. Это замечание особенно важно, если язык предназначается для конечных пользователей, хотя оно также существенно, если язык предназначается для использования прикладными программистами.

Далее, поскольку алгебра обладает реляционной полнотой, для доказательства того, что некоторый язык L также обладает реляционной полнотой, достаточно показать, что в языке L есть аналогии всех восьми алгебраических операций (на самом деле достаточно показать, что в нём есть аналоги пяти примитивных операций) и что операндами любой операции языка L могут быть любые выражения этого языка. Язык SQL ─ это пример языка, реляционную полноту которого можно доказать указанным способом. Язык QUEL ─ ещё один пример подобного языка. В действительности на практике часто проще показать то, что в языке есть эквиваленты операций реляционной алгебры, чем то, что в нём существуют эквиваленты выражений реляционного исчисления. Именно поэтому реляционная полнота обычно определяется в терминах алгебраических выражений, а не в терминах выражений реляционного исчисления.

При этом важно понимать, что реляционная полнота необязательно влечёт за собой полноту какого-либо другого рода. Например, желательно, чтобы язык также обеспечивал «вычислительную полноту», т.е. позволял вычислять результаты всех вычислимых функций. Заметим, что согласно нашему определению исчисление не обладает полнотой такого рода, хотя на практике подобная полнота для языка баз данных весьма желательна. Вычислительная полнота ­­─ это один из факторов, побудивших ввести в реляционную алгебру операции EXTEND и SUMMARIZE. В следующем разделе описано, как можно расширить реляционное исчисление, чтобы обеспечить в нём наличие аналогов этих операций.

Вернёмся к вопросу эквивалентности алгебры и исчисления. Мы на примере показали, что любое выражение исчисления можно преобразовать в его некоторый алгебраический эквивалент, а значит, алгебра по крайней мере не уступает по своей мощности исчислению. Можно показать обратное: каждое выражение реляционной алгебры можно преобразовать в эквивалентное выражение реляционного исчисления, а значит, исчисление по крайней мере не уступает по своей мощности реляционной алгебре. Отсюда следует, что реляционная алгебра и реляционное исчисление эквивалентны.


Информация о работе «Реляционное исчисление»
Раздел: Информатика, программирование
Количество знаков с пробелами: 50262
Количество таблиц: 13
Количество изображений: 0

Похожие работы

Скачать
27174
0
0

... ) AND FORALL СОТР2 (СОТР1.СОТР_ЗАРП > СОТР2.СОТР_ЗАРП) Здесь мы имеем два связанных вхождения переменной СОТР2 с совершенно разным смыслом. 5.2.2. Целевые списки и выражения реляционного исчисления Итак, WFF обеспечивают средства формулировки условия выборки из отношений БД. Чтобы можно было использовать исчисление для реальной работы с БД, требуется еще один компонент, который определяет ...

Скачать
16689
1
1

... 2935 Петров 144,000 310 2936 Сидоров 92,000 313 2937 Федоров 110,000 310 2938 Иванова 112,000 315 Нормализованные отношения составляют основу классического реляционного подхода к организации баз данных. Они обладают некоторыми ограничениями (не любую информацию удобно представлять в виде плоских таблиц), но существенно упрощают манипулирование данными. Рассмотрим, например, два ...

Скачать
48738
8
0

... , но не совпадающие понятия. Различия между отношениями и таблицами будут рассмотрены ниже. Термины, которыми оперирует реляционная модель данных, имеют соответствующие "табличные" синонимы: Реляционный термин Соответствующий "табличный" термин База данных Набор таблиц Схема базы данных Набор заголовков таблиц Отношение Таблица Заголовок отношения Заголовок таблицы Тело ...

Скачать
30181
0
4

... став вторичного ключа, не может принимать значение NULL. Перекрывающиеся ключи — сложные ключи, которые имеют один или несколько общих столбцов. Связанные отношения В реляционной модели данные представляются в виде совокупности взаимосвязанных таблиц. Подобное взаимоотношение между таблицами называется связью (rilationship). Таким образом, еще одним важным понятием реляционной модели является ...

0 комментариев


Наверх