5.2.7 Инфракрасные влагомеры


Известно, что в молекуле существуют два основных вида колебаний — валентные и деформационные. Колебания, в условиях которых атомы остаются на осях валентной связи, а расстояния между атомами периодически изменяются, называют валентными. Под деформационными понимают колебания, в условиях которых атомы отходят от оси валентных связей. Поскольку энергия деформационных колебаний значительно меньше энергии валентных колебаний, то деформационные колебания наблюдаются при больших длинах волн.

Валентные и деформационные колебания создают основные, обладаю­щие наибольшей интенсивностью полосы поглощения, а также обертонные полосы, имеющие частоты, кратные основной. Интенсивность обертонных полос поглощения меньше интенсивности основных.

Разграничение спектров по характеру поглощения совпадает с энерге­тическим делением инфракрасной (ИК) области излучений на ближ­нюю область, соответствующую области обертонов, и среднюю, соот­ветствующую области основных колебаний.

Главной особенностью ИК-спектров является то, что поглощение излу­чения зависит не только от молекулы в целом, но и от отдельных групп присутствующих в этой молекуле атомов. Это положение является основополагающим для ИК спектрального анализа вещественного состава и определения количеств тех или иных групп атомов, присутствующих в исследуемом материале.

Получают и исследуют ИК-спектры с помощью специальных прибо­ров — спектрометров или спектрофотометров, в которых излучение ис­точника направляется на исследуемый образец через монохроматор, вы­деляющий из интегрального пучка излучений монохроматическое излу­чение той или иной длины волны.

Излучение, прошедшее через контролируемый материал, улавливает­ся приемником, а сигнал, формируемый приемником, усиливается и об­рабатывается электронным блоком. Обычно в видимой и ближней ИК-областях источниками излучения служат лампы накаливания, а приемника­ми — фоторезисторы, например PbS, GaS, InSb и т.п. В средней и дальней ИК-областях источниками излучений могут быть накапливаемые керами­ческие стержни, а приемниками - термопары, болометры и т.п.

Количественный анализ содержания в контролируемом материале того или иного компонента достаточно прост, если имеется полоса погло­щения данного компонента, не перекрывающаяся полосами поглощения других компонентов. Тогда глубина полосы хорошо коррелируют с кон­центрацией исследуемого компонента.

Прибор обычно регистрирует прозрачность характеризующую отношение потока, прошедшего через вещество, к потоку, падающему на вещество:


5.2.8 Кондуктометрические датчики


Капиллярно-пористые влажные материалы с точки зре­ния физики диэлектриков относятся к макроскопически неоднородным диэлектрикам. Их неоднородность обуслов­лена в первую очередь наличием вкраплений влаги в основ­ной (сухой) материал. Кроме того, подавляющее большин­ство естественных и промышленных материалов неодно­родно по своему химическому составу, содержит примеси, загрязнения и воздушные включения.

Для таких материалов характерно превалирующее влия­ние влажности на электрические свойства материала. Являясь в сухом виде изоляторами с удельным объемным сопротивлением Pv=1010—1015 ом-см и выше, в результа­те увлажнения они становятся проводниками: величина Py понижается до 10-2—10-3 ом-см. Удельное сопротивление изменяется, следовательно, в зависимости от влажности в чрезвычайно широком диапазоне, охватывающем 12—18 порядков. Неоднородность диэлектрика, наличие в нем влаги сказываются не только на величине удельной прово­димости, но и на качественных особенностях электропро­водности: на ее зависимости от температуры и напряжен­ности электрического поля.


5.2.9 Выбор метода


Для моего технического задания наиболее полно подходит кондуктометрический метод измерения влажности.

Метод высушивания очень надежен, но имеет большую погрешность и достаточно ограниченную область применения. Конструкция сушильных шкафов достаточно сложна и дорогостояща.

Дистилляционный метод, как уже оговаривалось, имеет много недостатков, таких как: огнеопасное и хрупкое оборудование, большая погрешность.

Экстракционный метод слишком сложн в своей постановке. Используются расходные материалы.

Химический метод в отличие от других методов учитывает содержание связанной воды в материале, достаточно прост, но использует расходные материалы.

СВЧ-технология измерения влажности надежна, позволяет бесконтактно измерять влажность материала, но по сравнению с кондуктометрическим методом более сложен в исполнении.

Нейтронный метод измерения влажности имеет очень маленькую погрешность (0,3-1%), удобен для измерения влажности почвы, бетона. Но слишком большой объем навески (слой 10-20см или сфера D=15-40см), влияние на показания органических примесей, фоновая радиоактивность, делает его не применимым к текущему техническому заданию.

Инфракрасный влагомер сложен. Требует дополнительное дорогостоящее оборудование (спектрометр, монохроматор).

В отличие от всех выше перечисленных методов кондуктометрические датчики являются очень чувствительными (изменение удельного сопротивления на 10-12 порядков), конструктивно легко выполнимы, не требуют дополнительно дорогостоящих приборов в большей степени отвечает моему техническому заданию, а главное дополнительному условию: измерение влажности сыпучих материалов.


Выбор и описание датчика

Основным требованием, предъявляемым к датчикам электрических влагомеров, является требование воспроизводимости факторов, влияющих на результаты измерения. В связи с этим в некоторых датчиках предусматриваются дополнительные устройства, предназначенные для создания одинаковых условий подготовки или введения образца ма­териала в междуэлектродное пространство. Кроме того, к конструкции датчиков предъявляются и другие требова­ния, как-то: небольшой вес (особенно в переносных влаго­мерах), высокое сопротивление изоляции, которое должно быть в несколько раз выше максимального сопротивления материала между электродами. Последнее требование вле­чет за собой необходимость тщательной очистки и наблю­дения за состоянием изоляции в процессе эксплуатации, особенно при возможности загрязнения или увлажнения изоляции исследуемым материалом.

Для кондуктометрических влагомеров было разработано много конструкций датчиков; ниже рассматриваются наи­более характерные датчики, нашедшие практическое при­менение.


По принципу действия датчики для сыпучих материалов их можно разделить на две группы:

датчики без уплотнения сыпучего материала

дат­чики с принудительным уплотнением материала в между­электродном пространстве.

Основным недостатком датчиков первой группы явля­ется различная степень уплотнения материала между элек­тродами, сильно влияющая па электрические характеристи­ки материала. Скорость и высота падения материала при его введении в датчик, случайные сотрясения и удары по датчику меняют уплотнение. Для получения воспроизводи­мых условий измерения необходимы специальные приспо­собления и соблюдение определенной методики введения образца, обеспечивающие постоянство высоты и скорости падения материала в таких датчиках. Даже при соблюде­нии этих условий электрическое сопротивление материала при низкой влажности (до 12—13%) весьма велико, что несколько усложняет измерение. Еще важнее то обстоя­тельство, что при измерении сопротивления зернистых и кусковых материалов результат измерения зависит от со­стояния поверхности отдельных зерен или кусков (напри­мер, от ее шероховатости, запыленности). Также сильно влияет на результаты гранулометрический состав матери­ала. В этих датчиках трудно получить постоянное сопротив­ление контакта материала с электродами.

По указанным причинам в настоящее время датчики без уплотнения применяются только в автоматических вла­гомерах, где постоянство уплотнения материала обеспечено самим измеряемым объектом и где полностью использу­ются преимущества рассматриваемого типа датчиков — простота конструкции и удобство установки на потоке сы­пучих материалов.

В датчиках неавтоматических кондуктометрических вла­гомеров чаще всего применяют принудительное уплотнение образца сыпучего материала. При сжатии сыпучих матери­алов их проводимость увеличивается вначале достаточно резко; с повышением давления рост проводимости замед­ляется и, начиная с некоторой величины давления, измене­ния давления почти не влияют на величину сопротивления. Для уменьшения влияния колебаний степени уплотнения на результаты измерении нередко приходится применять достаточно высокие давления. В этом заключается ос­новной недостаток датчиков с уплотнением: большие уси­лия деформируют образец и в ряде случаев (например, при измерении влажности зерна) частично его разрушают. Вместо материала в естественном его состоянии объектом измерения становится искусственно спрессованный брикет из этого материала. Электрическое сопротивление такого брикета зависит и от механических свойств материала, таких, как твердость, стекловидность зерна и т. п. При прессо­вании образцов высокой влажности возможен частичный отжим влаги с ее вы­делением на электродах. Кроме того, большие усилия приводят к повышенному износу датчика. Деформация или разрушение образца материала при из­мерении влажности исключают возможность повторного измерения, что также является эксплуатационным недостат­ком.


Влагомер ВП-4


Г. Б. Пузрин предложил в конце 30-х годов конструкцию зерна, в котором постоянная навеска зер­на подвергается сжатию в постоянном объеме с помощью ручного пресса. Эта конструкция была применена, во вла­гомере ВП-4 Г. Б. Пузрина для зерна, нашедшем в последующем значительное распространение в хле­бозаготовительной системе На рис.1 приложения … показана кон­струкция электродного устройства влагомера ВЭ-2, представляющего собой модификацию прибора ВП-4, разработанную в последние годы. Навеска зерна 1 (для пшеницы, ржи, ячменя — 8 г, для овса — 7 г) насыпается в металли­ческий стакан 2. Одним из электродов служит кольцо 3. изолированное от стакана с помощью прокладок 4. Второй, центральный, электрод 5 соединен с корпусом датчика.

Конструкция электродов рассчитана на уменьшение влияния сопротивления торцовых частей брикета зерна. Пуансон 6 служит для уплотнения образца; давление на пуан­сон создает ручной винтовой пресс, снабженный визирным устройством, указывающим предел вращения зажимного винта при каждом прессовании образца. Это устройство должно обеспечить постоянство давления на образец при определениях влажности. Стакан 2 заключен в футляр 7 из диэлектрика, который по замыслу авторов конструкции при выполнении измерения предохраняет датчик от нагре­вания руками лаборанта. У описанного датчика необходимо часто (по инструкции к прибору ВЭ-2 перед каждой сме­ной) проверять правильность установки визирного устрой­ства. Проверка выполняется с помощью контрольного ци­линдра, вставляемого в датчик; в случае необходимости положение визирного устройства корректируется.


Влагомер для порошкообразных материалов


Датчик влагомера английской фирмы Маркони (Приложение … рис.1) Для измельченных порошкообразных материалов состоит из двух основных частей: ручного винтового пресса 1 и элек­тродного устройства 2. Пресс имеет металлическую скобу с накладкой 8 для поддержания датчика рукой, а также опору 4 для установки на столе. Винт через пружину, смонтированную внутри стакана 5, воздействует на толка­тель 6, уплотняющий посредством пуансона 7 образец ма­териала внутри полого цилиндра 8. Электродное устройство имеет два металлических концентрических электрода: 9 и 10, электрод 9 имеет форму кольца, 10—чашечки с круго­вым углублением. Рабочие поверхности электродов распо­ложены в одной плоскости; электроды смонтированы в кор­пусе, снабженном гнездом 11 для подключения к измерительной цепи. В этом датчике в кольцевом круговом зазоре между электродами, разделенными твердым диэлектриком, измеряется сопротивление спрессованной "лепешки" из исследуемого материала Взвешивания навески для определения влажности не тре­буется. Образец испытывается при определенном давлении (около 0,7 кГ/см2), создаваемом при вращении рычага пружина имеет предварительное натяжение.


Датчик влажности для формовочной смеси


Ограничение силы сжатия материала калиброванной пружиной применено в датчике для формовочной смеси ли­тейного производства (Приложение … рис1). Датчик-щуп имеет электроды в виде наклонных латунных пластинок 1, по­гружаемых в формовочную смесь. По мере погружения электродов смесь уплотняется и ее механическое сопротив­ление возрастает. Давление на рукоятку 2 передается элек­тродам пружиной 3 через шток. При определенном усилии, соответствующем давлению электродов на грунт, равному 0,5 кГ/см2, кольцо 4 замыкает выключатель 5 и вводит электроды в измерительную цепь.


Датчик влажности для зерна


Датчик, применяемый в распространенном в США вла­гомере для зерна типа TAG—Heppenstall, уплотняет сы­пучий материал в узком зазоре между двумя вращающи­мися металлическими валками с рифленой цилиндрической поверхностью. Общин вид датчика показан в Приложении … рис2. Однофазный электродвигатель мощностью 0,25 л. с. враща­ет через редуктор (электродвигатель и редуктор не пока­заны на рисунке) валик 1 со скоростью 32 об/мин; валик 1 электрически соединен со станиной датчика. Второй ва­лик 2 изолирован от корпуса стойками 3 из электроизоля­ционного материала. Валик 2 снабжен пружинящим тру­щимся контактом и ручкой 4 для поворачивания вручную с целью облегчения попадания зерна в зазор или выхода из него. Сцепление между валиками осуществляется через слой материала; последний поступает в зазор между вали­ками из засыпного бункера 5, изготовленного из пластмас­сы. Валики 1 и 2 выполют роль электродов; со­противление слоя сыпучего материала измеряется во время вращения вали­ков. Величины зазора между валиками регули­руются с помощью сменных прокладок 6 в зави­симости от того, какая зерновая культура иссле­дуется. Предельные вели­чины зазора равны 0,6мм для льняного семени и 3 мм для кукурузы. Под валиками установлены два скребка 7 из пластмассы; скребки прижи­маются пружиной 8 к поверхности валиков и очи­щают ее при вращении электродов. Весь датчик смонтирован на станине 9 из чугунного литья, имеющей два винта 10 для закрепления на столе.

Датчик с валками отличается громоздкостью и боль­шим весом и неприменим для мелко измельченных мате­риалов, таких, как мука. В то же время при применении этого датчика результаты измерения не зависят от вели­чины навески; можно использовать большие навески (100— 150 г и больше), значительно лучше отражающие среднюю влажность материала, чем малые навески, используемые в датчике с ручным прессом. Здесь, так же как и в дру­гих датчиках с прессованием материала, на результаты измерения влияет износ электродов, происходящий вслед­ствие больших усилий при прессовании. В датчике с вал­ками вследствие износа изменяются острота нарезки валиков.


Автоматическая влагоизмерительная установка дискретного действия АДВ


Автоматическая влагоконтрольная установка дискретного дей­ствия АДВ предназначена для определения влажности зерна с целью соответствующего его размещения по хранилищам.

При диапазоне влажности пшеницы 10...50% шкала прибора разделена на три части, характеризующие состояние зерна: «Сухое», «Влажное» и «Сырое». Установка работает в стационарных усло­виях при температуре окружающего воздуха —5...+35°С и относи­тельной влажности до 80%, питание от сети переменного тока на­пряжением 220 В.

В состав блок-схемы входит первичный преобра­зователь, который периодически заполняется пробами зерна, отби­раемого из автомашин с помощью пневмопробоотборщика. Преобра­зователем управляет командный прибор.

Показания по­тенциометра дублируют показания измерительного прибора. Пита­ние измерительной схемы установки от системы питания со стабилизированным напряжением.

Имеющееся в составе автоматического потенциометра позицион­ное регулирующее устройство управляет работой печатающего ме­ханизма, с помощью которого на приемных документах фиксируется категория влажности зерна.

В
лияние температуры зерна на электрическую емкость конден­сатора-преобразователя автоматически устраняется с помощью находящегося внутри него термокомпенсатора.

Проба зерна, вынутая из автомашины пневматическим пробо­отборником, в определенном объеме по­падает в приемный бункер 10, выполненный из изоляционного матери­ала, и удерживается в нем заслонкой /, которая устанавливается в горизонталь­ное положение с помощью электромаг­нита 8.

По сигналу, полученному с команд­ного прибора, отключается напряжение питания электромагнита 5, а заслонка 1 под действием пружины 4 и силы тяжести зерна мгновенно поворачивается вокруг своей оси- 2 и устанавливается вдоль стенки бункера 10. Проба зерна при этом попадает в измерительную ячейку кондуктометрического- преобразователя, находящегося между электродами 9. В ячейке зерно удерживается заслонкой 8, которую поднимает и удерживает в горизонтальном положении электромаг­нит 6.

По истечении определенного време­ни, необходимого для измерения и ра­боты печатающего механизма, с элект­ромагнита 6 снимается напряжение пи­тания, заслонка 8 под действием пружи­ны 7 и силы тяжести зерна поворачива­ется вокруг своей оси 5 и преобразова­тель освобождается от зерна. Через не которое время по команде прибора на электромагниты 3 и 6 поступает напряжение питания и они поднимают заслонки 1 и 8. После этого преобразователь готов к приему новой порции зерна.


П
риложение …

Рис1 Датчик влажности для зерна с прессованием образца.


П
риложение …


Рис.1 Датчик влажности для порошкообразных материалов.


Приложение …




Рис.1 Датчик влажности с вращающимися валками.


Приложение А

Р

ис1. Зависимость влажности Fsat от температуры.

Рис2. Семейство характеристик абсолютной и относительной влажности при различных температурах.


П
риложение Б


Рис1 Конструкция датчика влажности на основе LiCl:

1-Платиновый резистор.

2-Стеклоткань c LiCl.

3-Электродная спираль.


Р
ис2 Зависимость температуры переходного состояния tu от точки росы  для датчика влажности на основе LiCl.


П
риложение В


Р
ис1 Принципиальное устройство диэлектрического датчика влажности.


Рис2 Зависимость емкости датчика Cs от относительной влажности Fret.


П
риложение …

Рис1 Датчик влажности для зерна с прессованием образца.


П
риложение …


Рис.1 Датчик влажности для формовочной смеси.


П
риложение Е


Рис1 Датчик влажности для формовочной смеси.



Рис2 Датчик влажности с вращающимися валками.


П
риложение …


Рис.1 Датчик влажности для порошкообразных материалов.


Название, тип

датчика

Назначение Диапазон измерения % Погрешность измерения %

Температура материала C

Масса, кг
АВ зерна АВЗК-1

Влагомер зерна (полевой) типа ВЗПК-1

Переносной влагомер ВЗМ-1

Экспресс-влагомер типа ВСЛК-1

Влагомер

ВСМК-1М


Влагомер ВП-4


Влагомер для порошкообразных

материалов

Колос-1

Влагомер для формовочной смеси

Измерение и запись влажности зерна

Экспрессное опр. влажности зерна без размола

Опр. влажности зеленой массы (силоса)

Экспресс определение влажности конопли

Экспресс-определение влажности льна, подсолнечника, сои

Измерение влажности ржи, ячменя

Измерение влажности измельченных материалов

Влажность потока зерна

Экспресс-определение влажности бетона, цемента и т.д.

10…30


10…45(пшеница)

15…35(ячмень)


10…90


10..50


5…40


5…30


10…60


10…40

15…80

При влажности до 17% -1, выше -1,5


4


1,5


При влажности 5-17%-1, при 17-25-1,5,выше-3

При влажности 5-15%-1, выше1,5

При влажности

10-20%-1,20-35%-1.5, свыше35%-4

10-20%-1,свыше-1,5

15-25%-1

25-40%-2

40-60%-4,60-80%-7



5…50







10-100



12







2



Таблица 1. Влагомеры.


Информация о работе «Датчик влажности»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 35289
Количество таблиц: 1
Количество изображений: 16

Похожие работы

Скачать
47493
7
1

...  регулирования относительной влажности и температуры газообразных неагрессивных сред в промышленных, технологических и лабораторных установках и отображения измеренных значений на ж/к индикаторе. Технические характеристики датчика влажности ДВТ-02И Диапазон напряжения питания 12…36 В Количество унифицированных токовых выходов 4–20 мА 2 Рабочий диапазон канала измерения относительной ...

Скачать
53257
7
32

... хорошая очень хорошая Среди всех типов емкостные датчики, благодаря полному диапазону измерения, высокой точности и температурной стабильности, получили наибольшее распространение как для измерения влажности окружающего воздуха, так и применения в производственных процессах. Компания Honeywell производит семейство емкостных датчиков влажности, применяя метод многослойной структуры (рис. 2.8), ...

Скачать
13254
0
0

... спектральной чувствительности CdS приходится приблизительно на свет с длиной волны 500-550 нм, что соответствует приблизительно середине зоны чувствительности человеческого зрения. Оптические датчики, работающие на эффекте фотопроводимости, рекомендуется использовать в экспонометрах фото- и кинокамер, в автоматических выключателях и регуляторах света, обнаружителях пламени и др. Недостаток этих ...

Скачать
96103
12
8

... управления осуществляется с помощью автоматизированного модуля верхнего уровня, который также отвечает за интерфейс на посту оператора. 3.1 Требования к структуре системы Автоматизированная система управления и контроля климата в тепличных хозяйствах выполнена на базе микропроцессорной техники. По иерархическому принципу АСУ ККТХ должна подразделяться на уровни: нижний уровень: -  ...

0 комментариев


Наверх