4. Третий период развития электроники

 4.1 Изобретение точечного транзистора.

 Третий период развития электроники – это период создания и внедрения дискретных полупроводниковых приборов, начавшийся с изобретения точечного транзистора. В 1946 году при лаборатории "Белл Телефон" была создана группа во главе с Уильямом Шокли, проводившая исследования свойств полупроводников на Кремнии (Sc) и Германии (Ge) [Литература: Дж. Грик "Физика XX в. Ключевые эксперименты", М. 1978 г.] Группа проводила как теоретические, так и экспериментальные исследования физических процессов на границе раздела двух полупроводников с различными типами электрической проводимости. В итоге были изобретены: трехэлектродные полупроводниковые приборы – транзисторы. В зависимости от количества носителей заряда транзисторы были разделены на:

–     униполярные (полевые), где использовались однополярные носители.

–     биполярные, где использовались разнополярные носители(электроны и дырки).

 Идеи создания полевых транзисторов появились раньше, чем биполярных, но практически реализовать эти идеи не удавалось. Успех был достигнут 23 декабря 1947 г. сотрудниками лаборатории "Белл Телефон"– Бардиным и Браттейном, под руководством Шокли. Бардин и Браттейн в результате многочисленных вариантов получили работающий полупроводниковый прибор. Информация об этом изобретении появилась в журнале "The Physical Review" в июле 1948 года. Вот как об этом изобретении писали сами авторы: "Приводится описание трехэлементного электронного устройства, использующего вновь открытый принцип, который основан на применение полупроводника в качестве основного элемента. Устройство может быть использовано, как усилитель, генератор и в других целях, для которых обычно применяются вакуумные электронные лампы. Устройство состоит из трех электродов размещенных на германиевом блоке, как показано на Рис. 4.1

 Два из этих электродов называющиеся, эмиттером (Э) и коллектором (К), являются выпрямителями с точечным контактом и располагаются в непосредственной близости друг от друга на верхней поверхности. Третий электрод, большой площади и маленького радиуса, нанесен на основание – базу (Б). Использовался Ge n–типа. Точечные контакты изготовлялись как из Вольфрама так и из фосфористой бронзы. Каждый точечный контакт в отдельности вместе с электродом базы образует выпрямитель с высоким обратным сопротивлением. Ток, направление которого по отношению ко всему объему кристалла является прямым, создается дырками т.е. носителями, имеющими противоположный знак по отношению к носителям обычно присутствующим в избытке внутри объема Ge. Когда два точечных контакта расположены очень близко друг к другу и к ним приложено постоянное напряжение, контакты оказывают взаимное влияние друг на друга. Благодаря этому влиянию возможно использовать данное устройство для усиления сигнала переменного тока. Электрическая цепь с помощью которой можно этого добиться показана на Рис. 4.1 К эмиттеру приложено небольшое положительное напряжение в прямом направлении, которое вызывает ток в несколько миллиампер через поверхность. К коллектору прикладывается обратное напряжение, достаточно большое для того чтобы ток коллектора был равным или больше тока эмиттера(Ik ≥ Iэ). Знак напряжения на коллекторе таков, что он притягивает дырки идущие от эмиттера. В результате большая часть тока эмиттера проходит через коллектор. Коллектор создает большое сопротивление для электронов текущих в полупроводник, и почти не препятствует потоку дырок в точечный. Если ток эмиттера модулировать напряжением сигнала, то это приводит к соответствующему изменению тока коллектора. Была получена большая величина отношения выходного напряжения к входному, такого же порядка, что и отношение импедансов, выпрямляющего точечного контакта в обратном и прямом направлении. Таким образом возникает соответствующее усиление мощности выходного сигнала. Получили выигрыш в мощности в 100 раз. Подобные устройства работали как усилители при частотах вплоть до 10 МГц(мегагерц)."

 Устройство изобретенное Бардиным и Браттейном было названо точечным транзистором типа А и представлял собой конструкцию представленную на Рис. 4.2 Где (1) кристалл Германия, (2) вывод эмиттера, (3) вывод базы. Усиление сигнала осуществлялось за счет большого различия в величинах сопротивления, низкоомного входного и высокоомного выходного. Поэтому создатели нового прибора назвали его сокращенно – транзистором (в пер. с английского – "преобразователь сопротивления").




 4.2 Изобретение плоскостного биполярного транзистора.

 Одновременно, в период апрель 1947 – январь 1948 г., Шокли опубликовал теорию плоскостных биполярных транзисторов. Рассмотрев полупроводниковые выпрямительные устройства из кристаллов полупроводника, имеющего переход между областями p- и n- типа.(Рис. 4.3)

 Такое устройство, называемое плоскостным полупроводниковым выпрямителем, обладает малым сопротивлением, когда р-область – положительна по отношению к n-области. Характеристики плоскостного выпрямителя можно точно определить теоретически. По сравнению с точечным, плоскостной выпрямитель допускает большую нагрузку т.к. площадь контакта можно сделать достаточно большой. С другой стороны с увеличением площади растет шунтирующая контактная емкость. Далее Шокли рассмотрел теорию плоскостного транзистора из кристалла полупроводника, содержащего два p-n перехода (Рис. 4.4) Положительная р-область является эмиттером, отрицательная р-область коллектором, n-область представляет собой базу. Таким образом вместо металлических точечных контактов используются две p-n области. В точечном транзисторе два металлических точечных контакта необходимо было располагать очень близко друг к другу, и в плоскостном транзисторе оба перехода должны располагаться очень близко друг к другу. Область базы очень тонкая – менее 25 мкм. Плоскостные транзисторы обладают рядом преимуществ перед точечными: они более доступны теоретическому анализу, обладают более низким уровнем шумов, обеспечивают большую мощность. Для нормальной работы транзистора, как усилителя, необходимо чтобы на эмиттер было подано прямое, а на коллектор обратное смещение, по отношению к базе. Для p-n-p транзистора условие соответствует – положительному эмиттеру и отрицательному коллектору. Для n-p-n – обратные полярности т.е. отрицательный эмиттер и положительный коллектор.

 Изобретение транзисторов явилось знаменательной вехой в истории развития электроники и поэтому его авторы Джон Бардин, Уолтер Браттейн и Уильям Шокли были удостоины нобелевской премии по физике за 1956 г.



4.3 Предпосылки появления транзисторов.

 Появление транзисторов – это результат кропотливой работы десятков выдающихся ученых и сотен виднейших специалистов, которые в течении предшествующих десятилетий развивали науку о полупроводниках. Среди них были не только физики, но и специалисты по электронике, физхимии, материаловедению.

 Начало серьезных исследований относится к 1833 году, когда Майкл Фарадей работая с сульфидом серебра обнаружил, что проводимость полупроводников растет с повышением температуры, в противоположность проводимости металлов, которая в этом случае уменьшается.

 В конце XIX века были установлены три важнейших свойства полупроводников:

1. Появление ЭДС при освещении полупроводника.

2. Рост электрической проводимости полупроводника при освещении.

3. Выпрямляющее свойство контакта полупроводника с металлом.

В 20-е годы ХХ в. выпрямляющие свойства контакта полупроводников с металлом начали практически использовать в радиотехнике. Радиоспециалисту из Нижегородской радиотехнической лаборатории Олегу Лосеву в 1922 году удалось применить выпрямляющее устройство на контакте стали с кристаллом цинкита в качестве детектора, в детекторном приемнике под названием "Кристадин". Схема кристадина (Рис. 4.5) содержит входной настраиваемый контур L1C1 к которому подключена внешняя антенна А и заземление. С помощью переключателя П1 параллельно входному контуру подключается детектор Д1. Такой детектор может не только детектировать, но и предварительно усиливать сигнал, когда его рабочая точка находится на падающем участке ВАХ (Рис. 4.5(б)). На этом участке ВАХ сопротивление детектора становится отрицательным, что приводит к частичной компенсации потерь в контуре L1C1 и тогда приемник становится генератором.

 

 

 

 

 

 



Потенциометр R1 регулирует ток детектора. Прослушивание сигналов принятых радиостанцией осуществляется на низкоуровневый телефон, катушки которого включены последовательно с источником питания через дроссель Др 1 и катушку L2.

 Первый образец кристадина был изготовлен Лосевым в 1923 году. В это время в Москве начала работать центральная радиотелефонная станция, передачи которой можно было принимать на простые детекторные приемники только вблизи столицы. Кристадин Лосева позволял не только увеличить дальность приема радиостанции, но был проще и дешевле. Интерес к кристадину в то время был огромный. "Сенсационное изобретение" – под таким заголовком американский журнал "Radio News" напечатал в сентябре 1924 г. редакционную статью посвященную работе Лосева. "Открытие Лосева делает эпоху", – писал журнал, выражая надежду, что сложную электровакуумную лампу вскоре заменит кусочек цинкита или другого вещества простого в изготовлении и применении.

 Продолжая исследование кристаллических детекторов, Лосев открыл свечение карборунда при прохождении через него электрического тока. Спустя 20 лет это же явление было открыто американским физиком Дестрио и получило название электролюминесценции. Важную роль в развитии теории полупроводников в начале 30-х годов сыграли работы проводимые в России под руководством академика А.Ф. Иоффе. В 1931 году он опубликовал статью с пророческим названием: "Полупроводники – новые материалы электроники". Немалую заслугу в исследование полупроводников внесли советские ученые – Б.В. Курчатов, В.П. Жузе и др. В своей работе – "К вопросу об электропроводности закиси меди", опубликованной в 1932 году, они показали, что величина и тип электрической проводимости определяется концентрацией и природой примеси. Немного позднее, советский физик – Я.Н. Френкель создал теорию возбуждения в полупроводниках парных носителей заряда: электронов и дырок. В 1931 г. англичанину Уилсону удалось создать теоретическую модель полупроводника, основанную на том факте, что в твердом теле дискретные энергетические уровни электронов отдельных атомов размываются в непрерывные зоны, разделенные запрещенными зонами (значениями энергии, которые электроны не могут принимать) – "зонная теория полупроводников".

 В 1938 г. Мотт в Англии, Давыдов в СССР, Вальтер Шоттки в Германии сформулировали, независимо, теорию выпрямляющего действия контакта металл-полупроводник. Эта обширная программа исследований, выполняемая учеными разных стран и привела к экспериментальному созданию сначала точечного, а затем и плоскостного транзистора.


Информация о работе «История развития электроники»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 73694
Количество таблиц: 5
Количество изображений: 0

Похожие работы

Скачать
68784
4
0

... криоэлектронных автономных приборов с корпусом-криостатом.     Часть 2 Основные направления криоэлектроники Каждое новое направление в науке и технике имеет свою историю развития. Есть своя история и у криоэлектроники, которая с первых же шагов открыла пути создания принципиально новых приборов. Явления физики твердого тела при низких температурах, дающих доступ к глубинным квантовым ...

Скачать
21136
2
0

... ) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники. Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений - за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого ...

Скачать
53783
0
7

... – 5, в других субъектах количество объектов инфраструктуры наноиндустрии варьируется от 0 до 4 единиц. Рис. 8. Регионы лидеры по количеству объектов инфраструктуры наноиндустрии   5.2 Ключевые проблемы развития нанотехнологий в России Анализ мирового опыта формирования национальных и региональных программ по новым научно-техническим направлениям свидетельствует о необходимости выявления ...

Скачать
34524
0
0

... возможности различных компьютерных систем. В следующем пункте будет обращено внимание на развитие компании IBM и, естественно подробности некоторых этапов развития компьютеров. 2. История развития IBM История компании восходит к концу 19 века, когда немецкий иммигрант Герман Холлерит, работавший в американском Бюро переписи населения, предложил автоматизировать статистический учет ...

0 комментариев


Наверх