1.1.2. МДУ для наружных покровов глаз человека

Невидимое УФ (0.2<l<0.4 мкм) или ИК излучение (1.4<l<1000 мкм) практически не доходит до сетчатки и потому может повреждать лишь наружные части глаз человека: УФ излучение вызывает фотокератит, средневолновое ИК излучение (1.4<l<3 мкм) — отек, катаракту и ожог роговой оболочки глаза; дальнее ИК излучение (3 мкм<l<1 мм) — ожог роговицы. Поэтому МДУ облучения глаз при УФ и ИК излучении рассматривают здесь, хотя (из-за отсутствия фокусирующего действия хрусталика) численные значения данного МДУ на несколько порядков больше значений, приведенных в подразделе "МДУ прямого облучения сетчатки", и соответствуют МДУ для кожных покровов. К тому же для наружных покровов глаза и кожных покровов МДУ нормируются относительно апертуры диаметром 1 мм (для сетчатки — 7 мм), что еще более снижает требования лучевой безопасности в рассматриваемом случае. Тем не менее эти данные могут оказаться полезными, так как в настоящее время возрастает число коммерческих лазеров, работающих в УФ и ИК диапазонах.

Плотность мощности для сверхкоротких (менее 1 нс) импульсов почти одинакова в обоих диапазонах: 30 ГВт/м2 в УФ области и 100 ГВт/м2 в ИК области (1.4 мкм<l<1 мм).

При больших временах воздействия ситуация наиболее проста для жесткого (200<l<320.5 нм) УФ излучения, где МДУ=30 Дж/м2, вплоть до длительностей облучения 30000 с, то есть свыше 8 часов.

Более сложна система задания МДУ для узкого участка УФ излучения с 302.5<l<315 нм. Для сколько-нибудь длительного воздействия (10<Dt<30000 c) МДУ возрастает на 2.5 порядка по закону С2=10(l-295)/5 Дж/м2. В области импульсных воздействий (1 нс<Dt<10 c) такое быстрое нарастание МДУ имеет место лишь при Dt>T1=10(l-295)/5 c; если Dt<T1, то МДУ не зависит от длины волны и составляет С1=5600(Dt)0.75 Дж/м2.

МДУ для ближней УФ области (315<l<400 нм) в случае импульсного (1 нс<Dt<10 c) облучения почти не меняется, составляя С1=5600(Dt)0.25 Дж/м2, плавно переходящее в 10 КДж/м2 для времени облучения от 10 до 1000 с; если длительность облучения превышает 1000 с, то нормируют плотность мощности, и МДУ равно 10 Вт/м2.

В ИК области МДУ облучения наружных покровов почти не зависит от длины волны и составляет: для сверхкоротких (Dt<1 нс) импульсов 100 ГВт/м2; для гигантских ( 1 нс<Dt<100 нс) импульсов 100 Дж/м2; для остальных (100 нс<Dt<10 с) импульсов 5600(Dt)0.25 Дж/м2. Плотность мощности при непрерывном облучении (10 с<Dt<30000 c) не должна превышать 1 кВт/м2.

Надо отметить, что такие значения справедливы и для дальней ИК области (0.1<l<1 мм) с той лишь разницей, что МДУ задают здесь в апертуре диаметром 11 мм (а не 1 мм, как для УФ и основного ИК диапазонов).

1.1.3. Представление МДУ облучения как поверхности в координатах l - Dt

В 825-й публикации МЭК полностью, хотя и не всегда с достаточно высокой точностью, определены МДУ облучения роговой оболочки глаза человека прямым (то есть направленным непосредственно из оптической системы, а не рассеянным на каких-либо шероховатых поверхностях) лазерным излучением. Для удобства практического применения эти рекомендации МЭК представлены в виде таблицы 1.1.

В результате, во первых, появляется возможность достаточно просто (хотя и приближенно) определить численные значения МДУ при прямом облучении глаза человека лазерным излучением. При измерении следует лишь помнить следующие рекомендации МЭК по пространственному усреднению облученности: для 0.2<l<0.4 мкм — внутри круга Æ 1 мм; для 0.4<l<1.4 мкм — внутри круга Æ 7 мм (что соответствует зрачку глаза при темновой адаптации); для 1.4<l<100 мкм — внутри круга Æ 1 мм; для 100 мкм<l<1 мм — внутри круга Æ 11 мм.

Во вторых, таблица 1.1 свидетельствует о том, что в разных спектральных поддиапазонах лазерное воздействие частично аддитивно. Эта ситуация относится к двух- и более волновым лазерам, в основном, к лазерным приборам и установкам, в которых используется лазерное излучение разных длин волн. В соответствии с рекомендацией МЭК весь диапазон длин волн лазерного излучения делят на четыре поддиапазона, внутри которых лазерное излучение полностью аддитивно (как для глаз: так и для кожных покровов):

1.    поддиапазон — УФ-С и УФ-В, 200<l<315 нм;

2.    поддиапазон — УФ-А, 315<l<400 нм;

3.    поддиапазон — весь видимый и ИК-А, 0.4<l<1.4 мкм;

4.    поддиапазон — ИК-В и ИК-С, 1.4<l<1000 мкм.

Кроме того, всегда суммируют воздействия облучений 2-го и 4-го поддиапазонов. Аналогичное суммирование проводят и при совместном воздействии на кожные покровы лазерных излучений 2-го и 3-го поддиапазонов.

Естественно, что принимать во внимание эффект аддитивного воздействия имеет смысл лишь при близких к МДУ значениях облучения для каждой из генерируемых длин волн. К сожалению, 825-я публикация МЭК не дает аналитического выражения для определения МДУ аддитивного облучения, а лишь указывает на необходимость особой осторожности, если длительности воздействия существенно различаются (например, совместное действие импульсного и непрерывного излучений). В случае, если длительности импульсов или время экспозиции соизмеримы (имеют один порядок), то полагают, что парциальное (на одной длине волны) облучение пропорционально МДУ для данного излучения, то есть суммарное относительное облучение не должно превышать единицы:

И, наконец, МЭК настоятельно напоминает об опасности любого облучения, в том числе лазерного, подчеркивая, что МДУ является не порогом безопасности, а лишь усредненным значением (определенным на основе многочисленных экспериментов) уровня опасности повреждения органов зрения (и кожного покрова) человека.

Таблица 1.1

МДУ прямого облучения глаз человека

Длина МДУ
волны Еди- Усло- При длительности излучения Dt, с
l, нм ница изме-рения вие

<10-9

От 10-9 до 10-7

От 10-7 до 1.8×10-5

От 1.8×10-5 до 5×10-5

От 5×10-5 до 10

От 10 до 103

От 103 до 104

От 104 до 3×104

От 200 до

ГВт/м2

30
302.5 (УФ-С)

Дж/м2

30 30 30 30 30 30 30
От 302.5

Дж/м2

При Dt£T1

C1

C1

C1

C1

до 315 (УФ-В)

Дж/м2

При Dt>T1

C2

C2

C2

C2

Дж/м2

C2

C2

C2

ГВт/м2

30
От 315 до 400

Вт/м2

3×1010

10 10
(УФ-А)

Дж/м2

C1

C1

C1

C1

104

От 400

Вт/м2

5×106

10-2

до 550

Дж/м2

5×10-3

5×10-3

C6

C6

100 100
От 550 до 700

Дж/м2

При Dt£T2

С6

С6

Дж/м2

При Dt>T2

С3×102

С3×102

Дж/м2

5×10-3

5×10-3

С6

С6

Вт/м2

5×106

С3×10-2

От 700 до

Дж/м2

4×10-3

4×10-3

С4С6

С4С6

С4С6

1050 (ИК-А)

Вт/м2

4×106

3.2С4

3.2С4

От 1050 до

Дж/м2

5×10-2

5×10-2

5×10-2

6

6

1400 (ИК-В)

Вт/м2

5×107

16 16
От 1400

Дж/м2

100

С1

С1

С1

до 106 (ИК-С)

Вт/м2

1011

103

103

103

С1=5.6×103(Dt)0.25; T1=100.8(l-295)-15;

C2=100.2(l-295); T2=101+0.02(l-550);

C3=100.015(l-550);

C4=10(l-700)/500;

С6=18(Dt)0.75;


Информация о работе «Лазерная безопасность»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 45573
Количество таблиц: 13
Количество изображений: 0

Похожие работы

Скачать
42082
13
4

... мероприятия, контроль условий труда на лазерных установках. В современной отечественной научно-технической и нормативной литературе дано несколько вариантов классификации лазерных изделий. С позиции обеспечения лазерной безопасности их классифицируют по основным физико-техническим параметрам и степени опасности генерируемого излучения. В зависимости от конструкции лазера и конкретных условий его ...

Скачать
2539
0
0

0-83 ССБТ. Лазерная безопасность. Общие положения; · СанПиН 5804-91. Санитарные нормы и правила устройства и эксплуатации лазеров. В целях обеспечения безопасных условий труда персонала установлены предельно допустимые уровни лазерного излучения, т.е. уровни лазерного излучения, которые при ежедневном воздействии на человека не вызывают в процессе работы или в отдаленные сроки отклонений в ...

Скачать
54601
5
7

... в области нижних частот и преждевременной деградации излучающего кристалла лазера. Целью изобретения является повышение эффективности воздействия. Указанная цель достигается тем, что лазерное терапевтическое устройство, включающее схему управления, генератор-формирователь импульсов запуска, стабилизированный источник напряжения и лазерный излучатель снабжается рядом дополнительных схем, а ...

Скачать
87512
2
5

... к сети зануления или заземления. Выравнивание потенциалов применяется как дополнительный технический способ защиты при наличии зануления или заземления в помещениях с повышенной опасностью или особо опасных. Применение выравнивания потенциалов обязательно в животноводческих помещениях. Устройство выравнивания потенциалов осуществляется по проекту. 5. Режим защиты персонала при работе на ...

0 комментариев


Наверх