1 диэлектрик с большими потерями; 2  идеальный проводник

Рис.6. Дальняя рассеянная волна (дБ)

1 диэлектрик с большими потерями; 2 идеальный проводник.

Для подтверждения результатов численных расчетов были выполнены модельные эксперименты с использованием микроволн частоты 15 ГГц. Упрощенное изображение экспериментального оборудования, установленного в помещении, изолированном от влияния электрических волн, показано на рис.7. Излучающая пирамидоидальная рупорная антенна, центр рассеивающего тела (конечной длины) и приемная пирамидоидальная рупорная антенна устанавливались в одной и той же горизонтальной плоскости. Излучающая антенна находилась в фиксированном положении, приемная антенна могла передвигаться по рельсам, проложенным по окружности с центром на центральной оси рассеивающего тела. При этом расстояние между центральной осью рассеивающего тела и излучающей антенной составляет 3 м. (150 l).

Рис.7. Оборудование для измерения рассеянной волны:

1 - передатчик (излучающая антенна); 2 - приемник (приемная антенна)

То обстоятельство, что при выполнении сравнения экспериментальных результатов и результатов численных расчетов следует соблюдать определенную осторожность, связано с тем, что в экспериментах происходит интерференция падающей и рассеянной волн позади рассеивающего тела и измерение только рассеянной волны с технической точки зрения сопряжено со значительными трудностями. Одним из методов является выполнение сравнения только с отраженной волной. Однако, в данной работе в качестве одной из попыток решено провести сравнение с волной, которая получается в результате умножения падающей плоской волны на весовую функцию:

(33)

При этом функция f(j) представляет собой функцию, которая зависит от приемопередающих характеристик измерительной системы, а именно от угла, под которым происходит прием в электрическом поле принимаемых сигналов приемной антенной при отсутствии рассеивающего тела. В данной работе используется аппроксимация этой функции тригонометрическими функциями так, чтобы при отклонении от точки на одной прямой с передающим рупором больше, чем ± 30° происходило ослабление на - 20 дБ.

На рис.8 представлены измеренные и рассчитанные значения для рассеянной волны в том случае, когда параллелепипед из бетона с поперечным сечением в виде квадрата (25,5 см. х 25,5 см.) облучается электрической волной при угле падения 60°. При этом максимум в рассчитанных значениях равен 0 дБ, а измеренные значения представляют собой значения, которые сопоставляются рассчитанным значениям через максимальный уровень отраженной волны. Использованное в расчетах значение комплексной относительной диэлектрической проницаемости  представляет собой значение, найденное по методу кратковременного открытия (short×open) с заполнением микроволнового волновода на 15 ГГц бетоном. Это значение, будучи сравнено с результатами измерений, выполненных другими исследователями, представляется правильным.

Из рис.8 видно, что измеренные значения и рассчитанные значения для отраженной волны хорошо согласуются. С другой стороны, в теневой области (30°-90°) обнаруживаются и чрезвычайно отчетливые различия в этих значениях. В качестве первой причины этих различий можно указать на то обстоятельство, что падающая волна не является плоской волной в реальных экспериментах, а близка к сферической волне. Заключение об этом можно с делать так же и по тому факту, что, вследствие распространения фронта волны, в измеренных значениях более всего проявляется теневая темная часть. В качестве второй

Рис.8. рассеянная волна на диэлектрике с большими потерями: а) - результаты  измерений (бетон); b) - результаты расчетов (при ); 1 - Æ(град); 2 - (дБ).

В качестве второй причины можно считать то обстоятельство, что описанная экспериментальная система не является вполне двухмерной моделью. В экспериментах в качестве параллелепипеда используется тело конечной длины (1 м.), установленное на подставке; это приводит к тому, что нельзя пренебрегать влиянием волны, отраженной от подставки. Эти влияния проявляются в заметной интерференции измеренных значений при 10° - 110°. В качестве других причин можно отметить, что рассеянная волна в формуле (33) представляет собой величину, полученную применением просто метода перевала, вряд ли являющуюся хорошим приближением.

Для изучения различий между бетоном и проводником на рис.9 приводится пример результатов для случая , когда рассеивающее тело заменено на проводник с теми же параметрами, что и на рис.8. Измеренные значения относятся к случаю алюминиевой пластины толщиной 1 мм., изготовленной для параллелепипеда, а рассчитанные значения относятся к случаю идеального проводника. И в этом примере обнаруживается, что измеренные значения для отраженной волны и рассчитанные значения хорошо согласуются. Кроме того очевидно, что предположение о том, идеальным проводником является даже алюминиевая пластина, оказывается достаточно правильным. Наконец, сравнивая рис.8, 9, можем заключить, что подавление отраженной волны наблюдается в среде с большими потерями. Это заключение совпадает с заключением, сделанном на основании рис.5, 6.

На рис.10 представлены результаты, которые относятся к случаю, когда ширина равна ширине рассеивающего тела, приведенной на рис.8, а толщина в два раза меньше; угол падения выбран равным 45°. Очевидно, что в той мере, насколько мала толщина, отраженная волна в направлении j= 135° слабее волны, отраженной под углом j= -45°. И в этом примере измеренные значения для отраженной волны хорошо согласуются с рассчитанными значениями.

Рис.9. Рассеянная на проводнике волна: а) - результаты измерений (алюминий);

b) - результаты расчетов (идеальный проводник); 1 - Æ (град.); 2 - (дБ).

Рис.10. Рассеянная волна диэлектриком с большими потерями: а) - результаты измерений (бетон); b) - результаты расчетов (при ); 1 - Æ (град.); 2 - (дБ)

ЗАКЛЮЧЕНИЕ

Приведена точная формулировка задачи рассеяния плоской электромагнитной волны (Е-волны) на параллелепипеде из диэлектрика с большими потерями, в которой используется преобразование Фурье. В терминах преобразований Фурье приведено решение задачи. В том случае, когда ширина рассеивающего тела сравнительно велика по отношению к длине волны, а в среде этого тела имеются большие потери порядка потерь в бетоне, как показывает исследование, расчеты можно значительно упростить. Обсуждены различия по сравнению со случаем идеального проводника.


Информация о работе «Модель рассеяния электромагнитной волны параллелепипедом из диэлектрика с потерями»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 23548
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
147222
0
1

... это количество вещества, взятая в количестве 1 моля.   g - количество вещества или число молей. [g]= моль [m]= кг/моль Билет № 7   1. Важным понятием в молекулярной физике и термодинамике является понятие термодинамической системы, к рассмотрению которого мы и пе­реходим. 1.Термодинамической системой (или просто системой) называют совокупность большого числа молекул, атомов или ионов ...

Скачать
96981
0
0

... 34. Электромагнитная индукция. Магнитный поток. Электромагнитная индукция. Закон электромагнитной индукции. Правило Ленца Мы знаем, что электрический ток создаёт магнитное поле. Естественно возникает вопрос: «Возможно ли появление электрического тока с помощью магнитного поля?». Эту проблему решил Фарадей, открывший явление электромагнитной индукции, которое заключается в следующем: при всяком ...

Скачать
113333
0
2

... влияющие на точность и воспроизводимость результатов. Области практического применения лазерной размерной обработки ограничены преимущественно получением отверстий не выше 3-го класса точности. Тем не менее, лазерная технология получения отверстий внедрена на ряде предприятий, где с ее помощью получают черновые отверстия (на проблемах внедрения этих процессов мы остановимся позднее). Относительно ...

Скачать
121076
0
0

... через прозрачнуюя2среду, находящуюся в магнитном поле. Этот эффект был открыт вя21846 году. Открытие магнитооптического эффекта долгое времяя2 я2- 46 -я2имело значение в чисто физическом аспекте, но за последниея2десятилетия оно дало много практических выходов. Также былия2открыты другие магнитооптические эффекты, в частности, хорошоя2известный эффект Зеемана и эффект Керра, ...

0 комментариев


Наверх