2.2. На рис. 2 представлена схема генератора сигнала прямоугольной формы. Такие генераторы также называют мульивибраторами.
рис. 2.
Представленный генератор представляет собой операционный усилитель ОУ — ДА, охваченный положительной обратной связью через цепь R2 — R3. С другой стороны, эту схему можно охарактеризовать исходя из того, что ОУ — ДА с резисторами R2 — R3 представляют регенеративный компаратор, так называемый триггер Шмидта, охваченный ООС по цепи R1 — C.
Эпюры напряжений, поясняющие работу генератора, представлена на рис. 3.
рис. 3.
Рассмотрим работу генератора.
2.2.1. При включении питания в силу действия положительной обратной связи в схеме происходит лавинообразный процесс, в результате которого напряжение на выходе ОУ устанавливается на уровне напряжения насыщения положительной или отрицательной полярности. Пусть, например, в момент времени t=0 установилось напряжение +Uнас .
2.2.2. С этого момента времени начинается заряд конденсатора С по цепи: (+Uп1) — (выход ДА) — (R1) — (С) — (“корпус” — ).
Напряжение на конденсаторе Uc растет по экспоненте, стремясь к величине +Uнас (участок t0 — t1 на рис. 3).
2.2.3. На этом отрезке времени на входе “Р” ОУ действует положительное напряжение U0 , определяемое соотношением:
U0 = Uнас R3 / (R2 + R3) , (1)
Как только возрастающее напряжение на конденсаторе Uc достигнет этого значения, произойдет лавинообразный процесс, приводящий к “опрокидыванию” мультивибратора и установлению на его выходе напряжения -Uнас — момент времени t1 .
2.2.4. С этого момента происходит перезаряд конденсатора С по цепи: (“корпус” — ) — (С) — (R1) — (выход ДА) — (-Uп2). Напряжение, меняя свой знак, изменяется по экспоненциальному закону, стремясь к напряжению -Uнас (участок t1 — t2).
2.2.5. На этом отрезке времени на входе “Р” ОУ действует уже отрицательное напряжение U0 , определяемое соотношением (1). Как только напряжение на конденсаторе достигнет этого значения, произойдет очередное “опрокидывание” мультивибратора и на его выходе устанавливается напряжение +Uнас (момент t2).
2.2.6. С этого момента времени происходит перезаряд конденсатора С по цепи, писанной в п. 2.2.2. Описанные в п.п. 2.2.2. — 2.2.4. процессы повторяются, т.е. в генераторе устанавливается периодический процесс, формирующий на его выходе разнополярное напряжение прямоугольной формы с амплитудой:
Um = Uнас , (2)
2.2.7. Поскольку процесс перезаряда конденсатора одной и другой полярности происходит по цепям, содержащим идентичные элементы, интервалы времени:
(3)
и определяются постоянной времени:
(4)
Исходя из вышеприведенных соображений, легко получить соотношение для определения временных параметров выходного сигнала
(5)
(6)
2.2.8. Отметим также то, что регулировку частоты выходного сигнала можно производить изменением значений элементов, входящих в цепь заряда-разряда конденсатора С, т.е. изменением сопротивления резистора R1 и (или) изменением емкости конденсатора С.
2.2.9. Как видно из эпюр на рис.3, напряжение на конденсаторе Uc имеет форму, близкую к форме треугольного сигнала, с той лишь разницей, что фронты этого сигнала не линейны, а экспоненциальны.
3. Описание объекта и средств исследования.
Электрическая схема исследуемого генератора представлена на рис. 4.
3.1. На микросхеме К1402Д8А собран генератор прямоугольных импульсов, частота выходного сигнала которого регулируется переменным резистором R4 = 3.3 кОм.
Остальные параметры элементов схемы:
C1 = 1 мкФ ; R6 = 1 кОм ; R7 = 100 кОм ; R8 = 3.9 кОм.
Напряжение треугольной формы снимается с конденсатора С1 и через регулятор уровня на переменном резисторе R1 подается на каскад усиления, собранный на микросхеме К140УД8А.
Данные резисторов каскада:
R2 = R3 = 680 Ом ; R4 = 10 кОм.
Усиленный сигнал треугольной формы подается для наблюдения на контрольную точку, обозначенную символом “Вх2”.
3.3. Получение сигнала синусоидальной формы в данном генераторе осуществляется путем двухстороннего ограничения сигнала треугольной формы. Это ограничение выполняется в блоке двухстороннего ограничения, собранном на полупроводниковых диодах, рассмотрение схемы которого не входит в задачу данной лабораторной работы.
Получаемая с помощью этой операции “синусоида”, как можно в этом убедиться, экспериментально весьма далека от идеальной и могла бы быть использована лишь в аппаратуре низкого класса.
3.4. В этой схеме сигнал треугольной формы постоянно подключен к контрольной точке “Вх2”, “синусоида” и прямоугольный сигнал подключаются к контрольной точке “Вх1” через кнопку SA1 (“ВсВ / ВнК”) , расположенную на блоке К32 в поле надписи “коммуникатор” над гнездами “Вход 1”.
4. Порядок выполнения работы.
4.1. Расчетная часть.
4.1.1. Пользуясь значениями параметров схемы генератора из п. 3.1. и формулами (3) - (6) рассчитать период следования и частоту выходного сигнала генератора:
; .
4.1.2. Исходя из условия, что напряжение насыщения на выходе операционного усилителя на (2 - 3) В меньше напряжения питания, определить ожидаемую амплитуду Um прямоугольных импульсов на выходе генератора (формула 2).
4.1.3. Исходя из эпюр сигналов на генераторе (рис. 3) и параметров элементов схемы и п. 3.2., рассчитать амплитуду импульсов треугольной формы на выходе генератора (“Вх2”) (при этом движок потенциометра Р1 должен находиться в крайнем верхнем положении).
4.1.4. Результаты расчетов по п.4.1. свести в таблицу 1.
4.2. Экспериментальная часть.
4.2.1. Убедиться в том, что кнопка “ВсВ / ВнК” под подписью “КВУ” и аналогичная правая кнопка в поле надписи “Коммутатор” — отжаты. Установить потенциометр R4.
4.2.2. Наблюдая сигнал прямоугольной формы на выходе генератора, определить его параметры и полученные данные занести в таблицу 1. Повторить измерение периода следования Т для другого положения потенциометра R4, установленного лаборантом или преподавателем.
4.2.3. Наблюдая сигнал треугольной формы на выходе генератора, определить его параметры и данные записать в таблицу 1.
4.2.4. Зарисовать эпюры сигналов п.п. 4.2.2. и 4.2.3. в едином масштабе времени, с учетом изменения фазы каскадом на ДА2.
4.2.5. Проверить и зарисовать эпюру сигнала синусоидальной формы на выходе генератора и определить его амплитуду.
Таблица 1.
Форма сигнала | Т=ТМИН+ТМАКС /мс/ | F=Fмин+Fмакс (кгц) | Um (В) |
| |||
| |||
| |||
5. Содержание отчета.
1. Название и цель работы.
2. Схема исследуемого генератора.
3. Формулы для расчетов и расчеты по п.4.1.
4. Таблица и эпюры напряжений.
5. Выводы по работе.
6. Контрольные вопросы.
1. Что такое положительная обратная связь ?
2. На какие два крупных класса подразделяются генераторы электрических сигналов ?
3. Что называется мультивибратором ?
4. Чем определяется частота выходного сигнала исследуемого генератора ?
5. Чем определяется амплитуда выходных импульсов генератора ?
6. Какая регулировка частоты сигнала предусмотрена в схеме исследуемого генератора ?
7. Какую роль выполняет каскад на микросхеме ДА2 (рис. 4) ?
8. Каково назначение резисторов R7 и R8 на схеме (рис. 4) ?
9. Что регулируется переменным резистором R1 на схеме генератора (рис. 4) ?
7. Список рекомендуемой литературы.
1. Забродин Ю.С. Промышленная электроника — М. : Высшая школа, 1982.
2. Хоровиц П., Хилл У. Искусство схемотехники. Ч. I, II: Пер. с. англ. / Под. ред. М.В. Гальперина — М. : Мир., 1983.
3. Основы промышленной электроники / Под ред. В.Г. Герасимова — М. : Высшая школа , 1986.
4. Щербаков В.И., Гредов Г.И. Электронные схемы на операционных усилителях : Справочник. — Киев : Техника, 1983.
8
... условиям эксплуатации и конструктивным показателям, могут образовывать семейства серий интегральных схем. 2. ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ Логические и запоминающие элементы составляют основу устройств цифровой обработки информации – вычислительных машин, цифровых измерительных приборов и устройств автоматики. Логические элементы выполняют простейшие логические ...
... электротехнических и электронных устройств, в которых используется явление резонанса напряжения. Литература 1. Иванов И.И., Равдоник В.С. Электротехника. - М.: Высшая школа, 1984, с.53 - 58. 2. Касаткин А.С., Немцов М.В. Электротехника. - М.: Энергоатомиздат, 1983, с.73 - 77. Лабораторная работа №5 КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ Цель работы. Ознакомление с методом повышения ...
... полярности источников питания на рисунке 3.4 и направления токов для p-n-p транзистора. В случае n-p-n транзистора полярности напряжения и направления токов изменяются на противоположные. Рисунок 3.4 Физические процессы в БТ. Этот режим работы (НАР) является основным и определяет назначение и название элементов транзистора. Эмиттерный переход осуществляет инжекцию носителей в узкую ...
... измениться в е раз из-за рекомбинации. Для диода с тонкой базой при низкой частоте постоянная времени равна (1.6) 2. РАСЧЕТ и исследование мощных низкочастотных диодов на основе кремния 2.1 Расчет параметров диода Проведем расчет и исследования статических и динамических характеристик 4H-SiC p+-п0-n+ диодов, рассчитанных на обратное напряжение 6, 10 и 20 кВ и ...
0 комментариев