2.2. ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР ШИРОКОПОЛОСНОГО УСИЛИТЕЛЯ
При проектировании широкополосных передатчиков средней и большой мощности одной из основных является задача максимального использования транзистора выходного каскада усилителя по выходной мощности. Оптимальное сопротивление нагрузки мощного транзистора, на которое он отдает максимальную мощность, составляет единицы ом [2]. Поэтому между выходным каскадом и нагрузкой усилителя включается трансформатор импедансов, реализуемый, как правило, на ферритовых сердечниках и длинных линиях [1–4, 14]. Принципиальная схема усилительного каскада с трансформатором импедансов, имеющим коэффициент трансформации сопротивления 1:4, приведена на рис. 2.2,а, эквивалентная схема по переменному току – на рис. 2.2,б, где – конденсатор фильтра; – трансформатор; , – элементы схемы активной коллекторной термостабилизации [15]; – транзистор выходного каскада усилителя. На рис. 2.2,в приведен пример использования трансформатора с коэффициентом трансформации 1:9.
б)
а) в)
Рис. 2.2Согласно [16, 17] при заданном значении нижней граничной частоты полосы пропускания разрабатываемого усилителя требуемое число витков длинных линий, наматываемых на ферритовые сердечники трансформатора, определяется выражением:
, (2.4)
где d – диаметр сердечника в сантиметрах;
N – количество длинных линий трансформатора;
– относительная магнитная проницаемость материала сердечника;
S – площадь поперечного сечения сердечника в квадратных сантиметрах.
Значение коэффициента перекрытия частотного диапазона трансформирующих и суммирующих устройств на ферритовых сердечниках и длинных линиях лежит в пределах 2·104...8·104 [16, 17]. Поэтому, приняв коэффициент перекрытия равным 5·104, верхняя граничная частота полосы пропускания трансформатора может быть определена из соотношения:
(2.5)
При расчетах трансформаторов импедансов по соотношениям (2.4) и (2.5) следует учитывать, что реализация более 1 ГГц технически трудно осуществима из-за влияния паразитных параметров трансформаторов на его характеристики [3].
Требуемое волновое сопротивление длинных линий разрабатываемого трансформатора рассчитывается по формуле [16, 17]:
. (2.6)
Методика изготовления длинных линий с заданным волновым сопротивлением описана в [18].
Входное сопротивление трансформатора, разработанного с учетом (2.4) – (2.6), равно:
. (2.7)
Пример 2.2. Рассчитать , , трансформатора на ферритовых сердечниках и длинных линиях с коэффициентом трансформации сопротивления 1:9, если = 50 Ом, = 5 кГц.
Решение. В качестве ферритовых сердечников трансформатора выберем кольца марки М2000НМ 20х10х5,имеющих параметры: = 2000; d = 6 см; S = 0,5 см2. Из (2.5) – (2.7) определим: N = 3, = 16,7 Ом, = 250 МГц. Теперь по известным параметрам кольца из (2.4) найдем: n=16,7. То есть для создания трансформатора импедансов с = 5 кГц необходимо на каждом ферритовом кольце намотать не менее 17 витков. Длина одного витка длинной линии, намотанной на ферритовое кольцо, равна 3 см. Умножая это значение на 17, получим, что минимальная длина длинных линий должна быть не менее 51 см. С учетом необходимости соединения длинных линий между собой, с нагрузкой и выходом усилителя, следует длину каждой длинной линии увеличить на
2...3 см.
2.3. ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР полосового УСИЛИТЕЛЯ
При проектировании полосовых передатчиков средней и большой мощности, также как и при проектировании широкополосных, одной из основных является задача максимального использования по выходной мощности транзистора выходного каскада усилителя. Однако в этом случае между выходным каскадом и нагрузкой усилителя включается трансформатор импедансов, выполненный в виде фильтра нижних частот [3, 19, 20]. Чаще всего он выполняется в виде фильтра нижних частот четвертого порядка [19–23]. Принципиальная схема усилительного каскада с таким трансформатором приведена на рис. 2.3,а, эквивалентная схема по переменному току – на рис. 2.3,б, где элементы формируют трансформатор импедансов, обеспечивающий оптимальное, в смысле достижения максимального значения выходной мощности, сопротивление нагрузки транзистора и практически не влияют на форму АЧХ усилительного каскада. Методика расчета оптимального сопротивления нагрузки мощного транзистора дана в [2, 3, 24].
Наиболее полная и удобная для инженерных расчетов методика проектирования рассматриваемых трансформаторов импедансов приведена в [25, 26]. В таблице 2.2 представлены взятые из [26] нормированные относительно и значения элементов для относительной полосы рабочих частот трансформатора равной 0,2 и 0,4 и для коэффициента трансформации сопротивления лежащего в пределах 2...30 раз, где = – входное сопротивление трансформатора в полосе его работы, = – средняя круговая частота полосы рабочих частот трансформатора.
а) б)
Рис. 2.3
Выбор w равной 0,2 и 0,4 обусловлен тем, что это наиболее часто реализуемая относительная полоса рабочих частот полосовых передатчиков средней и большой мощности, так как в этом случае перекрывается любой из каналов телевизионного вещания и диапазоны ЧМ и FM радиовещания [27].
Таблица 2.2 – Нормированные значения элементов трансформатора
2 | 3 | 4 | 6 | 8 | 10 | 15 | 20 | 30 | ||
w = 0,2 | 0,821 | 1,02 | 1,16 | 1,36 | 1,51 | 1,62 | 1,84 | 2,02 | 2,27 | |
0,881 | 0,797 | 0,745 | 0,671 | 0,622 | 0,585 | 0,523 | 0,483 | 0,432 | ||
w = 0,4 | 0,832 | 1,04 | 1,19 | 1,40 | 1,56 | 1,69 | 1,95 | 2,15 | 2,46 | |
0,849 | 0,781 | 0,726 | 0,649 | 0,598 | 0,559 | 0,495 | 0,453 | 0,399 |
При выбранных значениях нормированные значения элементов определяются из соотношений [23]:
(2.8)
Истинные значения элементов рассчитываются по формулам:
(2.9)
Пример 2.3. Рассчитать элементы трансформатора импедансов (рис. 2.3) при w = 0,2, = 20 и предназначенного для работы в FM диапазоне (88...108 МГц) на нагрузку 75 Ом.
Решение. Из таблицы 2.2 для = 20 найдем: = 2,02, = 0,483. По формулам (2.8) определим: = 9,67, = 0,101. С учетом того, что == 3,75 Ом, а == 6.154·108 из (2.9) получим: = 12,3 нГн, = 208 пФ, = 58,9 нГн, = 43,7 пФ.
... снизить вероятность возникновения пожаров на данном объекте. ЗАКЛЮЧЕНИЕ С целью обеспечения безопасности движения речного транспорта в камере шлюза Усть-Каменогорской гидроэлектростанции в данном дипломном проекте была разработана радиолокационная станция обнаружения надводных целей, она гораздо эффективнее, чем, например система видео наблюдения. Были рассчитаны основные тактико- ...
... , обеспечивающий ослабление высших гармоник на 40 дБ вне рабочего диапазона частот передатчика в соответствии с техническим заданием (см. раздел 4 АСЧЁТ ВЫХОДНОГО ФИЛЬТРА). Поскольку в данной курсовой работе необходимо спроектировать только оконечный мощный каскад связного передатчика с ЧМ, то для конкретизации, входящие в его состав блоки обведены синей пунктирной линией, и именно о них далее ...
... (2.3) Rкэ=2·25.22/44=7.22 Ом Выберем коэффициент деления Сопротивление коллекторной нагрузки двух плеч двухтактного генератора 14.44 Ом Сопротивление нагрузки, согласно заданию на проектирование 50 Ом. Отношение двух сопротивлений и будет коэффициент трансформации 0.28. Ближайший коэффициент 0.25. Rкэ=6.25 Ом Для определенного сопротивления нагрузки проведем расчет коллекторной цепи. ...
... ЧМ. ФНЧ, выполненный на интегрирующей RC-цепочке, ограничивает спектр сигнала до 3,5 кГц. Модулирующий сигнал, усиленный и прошедший цепи коррекции поступает на варикап ГУНа, где производится частотная модуляция несущего колебания. ГУН выполним по схеме Клаппа, его центральная частота управляется с помощью второго варикапа, на который управляющий сигнал подается с цифрового синтезатора частоты, ...
0 комментариев