1.3.2 Сплавные переходы.

Обычно получают выплавлением примеси в монокристалл полупроводника (рис. 1.5.). Монокристалл, например, германия n-типа распиливают на пластины толщиной 200-400 мкм и затем после травления и полировки разрезают на кристаллы площадью в два-три миллиметра и больше. На кристаллы, помещенные в графитовые кассеты, накладывают таблетку акцепторного материала, чаще всего индия. Затем кассета помещается в вакуумную печь, в которой таблетка индия и слой германия под ней расплавляются. Нагрев прекращается и при охлаждении германий кристаллизуется, образуя под слоем индия слой p-типа. Застывшая часть индия представляет собой омический (невыпрямляющий) контакт, на нижнюю часть пластины наносят слой олова, который служит омическим контактом к германию n-типа. К индию и олову припаивают выводы обычно из никелевой проволочки.

Иногда, для образования омического контакта с областью n-типа, на неё напыляют сплав Au-Sb, содержащий примерно 0,17% сурьмы, и вплавляют его при температуре 40°С.

1.3.3 Диффузионные переходы.

 

Диффузионные переходы получают диффузией примесного вещества в исходную полупроводниковую пластинку (рис. 1.6.). Это один из наиболее широко используемых методов получения p-n-перехода, он имеет несколько разновидностей.

При планарном методе диффузии переходы получают, используя изолирующий слой, препятствующий диффузии примесей. На поверхности кремния n-типа выращивается тонкий (около 3 мкм) слой двуокиси кремния SiO2 (рис. 1.6.). Фотолитографическим методом в определенных местах окисла получают «окна», через которые диффундирующие примеси проникают в n-слой, образуя переход.

Методы диффузии обеспечивают получение плавных p-n переходов и используются при изготовлении интегральных микросхем.

1.3.4 Эпитаксиальные переходы.

Эпитаксиальные переходы образуются ориентированным направлением слоя монокристаллического полупроводника на исходном монокристалле-подложке (рис. 1.7.).

1–p-n-переход; 2–p-область; 3–слой высокоомного полупроводника; 4–подложка.

Рисунок 1.8 Эпитаксиальный переход, образованный по планарно-эпитаксиальному методу.

Для проведения эпитаксии необходимо создавать условия для конденсации атомов осаждаемого вещества на поверхности подложки. Конденсация происходит перенасыщением пара или жидкого раствора, а также при испарении осаждаемого вещества в вакууме в специальных реакторах. При наращивании плёнки с проводимостью противоположной подложке, образуется p-n-переход.

При изготовлении интегральных схем широко используют планарно-эпитаксиальный метод. Особенность такого технологического процесса заключается в том, что путём наращивания на подложку 4 из низкоомного кремния наносят тонкий слой 3 высокоомного полупроводника, повторяющего структуру подложки. Этот слой, называемый эпитаксиальным, покрывают плотной защитной пленкой SiO2 толщиной 1 мкм (рис. 1.8.). В плёнке протравливают «окно», через которое путем диффузии бора или алюминия создается p-n-переход, выход которого на поверхность оказывается сразу же надежно защищенным пленкой окисла.

Следует отметить, что в последние годы широкое распространение получили такие методы формирования p-n-переходов, как ионное легирование и молекулярно-лучевая эпитаксия.

1.4 Энергетическая диаграмма p-n-перехода в равновесном состоянии.

Для анализа физических процессов, протекающих в полупроводниковых приборах удобно использовать метод энергетических диаграмм. Энергетическая диаграмма p-n-перехода в состоянии термодинамического равновесия представлена на рис. 1.9.

Рисунок 1.9 Энергетическая диаграмма p-n перехода.

На оси ординат отложена энергия электрона Е. Энергия дырок на диаграмме возрастает в направлении - Е. Так как частицы стремятся занять состояние с минимальной энергией, электроны на диаграмме имеют тенденцию «утонуть», а дырки «всплыть». При отсутствии вырождения, общий для всей системы уровень Ферми расположен внутри запрещенной зоны, ширина которой не зависит от координаты. Уровень электростатической энергии F, показан на рис. 1.9. пунктиром, соответствует положению уровня Ферми в собственном полупроводнике и расположен вблизи середины запрещенной зоны. Энергетические уровни изображены горизонтальными прямыми. Это выражает тот факт, что энергия электрона, находящегося на данном уровне, например, на дне зоны проводимости, во всех точках полупроводника одинакова. После установления равновесия, образуется р-n–переход с потенциальным барьером для основных носителей равным j0= qVk. Электроны, переходящие из n- в р–область, преодолевая этот барьер, увеличивают свою потенциальную энергию на j0 = qVk. Поэтому все энергетические уровни полупроводника, искривляясь в область p-n-перехода, поднимаются вверх на Ек, как показано на рис. 1.9. При этом уровни Ферми F0 и F устанавливаются на данной высоте, как в случае двух металлов.

В электрических нейтральных областях эмиттера (х<-lр0) и базы (х>ln0) поле равно нулю, и уровни Ес (энергия, соответствующая дну зоны проводимости), Еv (энергия, соответствующая потолку валентной зоны), Fi (электрическая энергия); располагаются горизонтально. В области p-n-перехода (-lp0<х<ln0) электрическое поле направлено справа налево (вдоль градиента Fi).

Равновесная концентрация носителей заряда в отсутствии вырождения определяется взаимным расположением уровней F и Fi.

nо = ni ехр [(F - Fi) / kT ] (1.4.1)

pо = ni ехр [(Fi - F ) / kT ] (1.4.2)

В эмиттере p-типа (х<Lp0) фермиевская энергия меньше электрической энергии:F<Fi, pр0> nр0

В базе n-типа: F > Fi, nn0 > pn0

В плоскости физического перехода Х-Хф выполняется условие:

Fi(Xф) =F

Ввиду искривления запрещенной зоны в области перехода между эмиттером и базой существует энергетический барьер, высота которого равна разности электростатических энергий в n- и p-областях (рис.1.9.).

Ек=Fip-Fin

Соответственно потенциалы эмиттера и базы отличаются на величину

φк=(Fip - Fin)/e, (1.4.3)

где jк - контактная разность потенциалов.

Энергетический барьер препятствует диффузионным потокам электронов из базы в эмиттер и дырок, из эмиттера в базу. Величина барьера автоматически становится такой, чтобы точно скомпенсировать диффузные потоки.

1.5 Токи через p-n-переход в равновесном состоянии.

Рассмотрим зонную диаграмму p-n-перехода. Градиенты концентрации подвижных носителей заряда, а также градиент электрического потенциала в p-n-переходе вызывает появления диффузионных и дрейфовых токов через переход. Механизм протекания токов представлен на рис. 1.9., где дырки изображены кружками со знаком «+», а электроны со знаком «–».

Потенциальный барьер создает различные условия для перехода носителей в смежные области.

Например, электрон из слоя n может переходить в слой p только в том случае, если он обладает достаточной энергией для преодоления ступени высотой Ек, т.е. если он сможет преодолеть силы электрического поля, выталкивающего его из перехода обратно в n-слой. Переход же электронов из p-слоя в n-слой совершается беспрепятственно, более того, электрическое поле, действующее в переходе, помогает им (электроны как бы «скатываются» из p-слоя). В состоянии равновесия эти потоки носителей взаимно уравновешивают друг друга.

Аналогичная ситуация складывается в валентной зоне. Дырки, чтобы перейти из слоя p в слой n должны «опустится» на глубину Ек. Поскольку движение дырок вызвано противоположным перемещением электронов, это означает, что дырки также должны обладать соответствующей энергией, чтобы преодолеть барьер высотой Ек при переходе из p-слоя в n-слой. То есть дырки, переходящие из p- в n-слой, должны обладать энергией большей, чем энергия действующего в переходе электрического поля. Обратное же движение дырок (из n-слоя в p-слой) совершается беспрепятственно.

Таким образом, в равновесном состоянии в переходе протекает целый ряд составляющих тока.

Концентрация электронов в зоне проводимости n-области уменьшается по мере увеличения энергии от уровня Ес. Под действием хаотического теплового движения электроны могут попадать из n-области в p-n-переход. Наименее энергичные электроны (с энергией близкой к Ес) отражаются потенциальным барьером и возвращаются в n-область (процесс 1, рис. 1.9.). Более энергичные электроны дальше проникают в область перехода, однако если их кинетическая энергия меньше высоты барьера Ек, они также возвращаются в n-область, не вызывая тока через переход (процесс 2) и, наконец, энергичные электроны с кинетической энергией большей Ек, могут преодолевать барьер (процесс 3). Такие носители вызывают протекание через переход диффузионного электронного тока с плотностью jngup0 (рис. 1.9.) направленного вдоль оси Х (по направлению электронного тока противоположно направлению потока электронов).

Диффузионный ток полностью компенсируется встречным потоком электронов из p-области. В p-области электроны являются неосновными носителями и содержатся в небольшом количестве. Если под действием теплового движения электроны попадают из p-области в переход, они подхватываются электрическим полем перехода и переходят в n-область (процесс 4), вызывая протекание через переход дрейфового тока электронов jngp0, направленного против оси Х (вдоль поля). В состоянии термодинамического равновесия диффузионный и дрейфовые токи электронов в точности компенсируют друг друга:

Jngup0+jngp0=0

Аналогичным образом компенсируются диффузная и дрейфовая составляющая дырочного тока (процесс 1-4).

Кроме рассмотренных механизмов протекания тока, существуют токи, связанные с процессами термогенерации и рекомбинации электронно-дырочных пар в области перехода. Дырки и электроны, проникающие в переход со стороны p- и n-областей соответственно, имеют конечную вероятность рекомбинировать в переходе (процесс 5-5’); с этим процессом связан ток, протекающий в направлении оси Х. С другой стороны, при термогенерации электронно-дырочных пар в переходе, образовавшиеся носители заряда подхватываются электрическим полем, причем электроны переносятся в n-область, а дырки в p-область (процесс 6-6’). Возникающий при этом ток термогенерации направлен против оси X (вдоль поля) и в точности компенсирует ток рекомбинации:

jz0+jg0 = 0

Суммарная плотность тока через переход в состоянии равновесия равна нулю:

j0 = jpgup0 + jpgp0 + jngup0 + jngp0 + jz0 + jg0 = 0

Следует отметить, что каждый из рассмотренных токов имеет малую величину. Дрейфовые токи малы ввиду того, что переносятся неосновными носителями в p- и n-областях, концентрация которых очень низка.

Диффузионные токи также малы ввиду того, что переносятся только наиболее энергичными носителями с кинетической энергией, большей высоты Ек, число которых также невелико. Токи рекомбинации малы ввиду малых размеров p-n-перехода (число генерированных пар мало) и мало временя пребывания носителей в переходе.

1.6 Методика расчета параметров p-n-перехода.

Основными параметрами p-n-перехода являются контактная разность потенциалов - jк, ширина перехода l0 = ln0 + lp0 и максимальная напряженность электрического поля Еmax. Необходимо также знать протяженность перехода n- и p-области по отдельности (ln0, lp0) и распределение напряженности электрического поля в переходе Е(x).

Контактная разность потенциалов может быть определена с помощью соотношений (1.4.1), (1.4.2), (1.4.3). Учитывая, что концентрация носителей заряда на грани перехода (в плоскостях X = - lp0, X = ln0) соответствует равновесным значениям (рис. 1.2.) получим:

(1.6.1.а)

(1.6.1.б)

перемножая равенства (1.6.1), с учетом (1.4.3), (1.2.1), (1.2.2), получим:

(1.6.2.а)

(1.6.2.б)

Равенство (1.6.2.а) свидетельствует о том, что контактная разность потенциалов определяется отношением концентраций однотипных носителей по разные стороны перехода, что является прямым следствием статистики Максвела-Больцмана в невырожденном полупроводнике.

Для практических целей удобно пользоваться соотношением (1.6.2.б), позволяющим вычислить контактную разность потенциалов непосредственно через концентрации легирующих примесей.

Из рис. 1.9. видно, что при отсутствии вырождения (когда уровень Ферми лежит в запрещённой зоне) высота потенциального барьера не может превышать ширины запрещенной зоны Е.

При этом

Из рис. 1.9. видно, что контактная разность потенциалов увеличивается с увеличением легирования эмиттера и базы. Переходы, изготовленные на основе полупроводника с большой шириной запрещенной зоны (и, следовательно, меньшей собственной концентрации носителей заряда ni), имеют большую контактную разность потенциалов.

Основным допущением при анализе перехода является пренебрежение концентрациями подвижных носителей заряда по сравнению с концентрациями примесей (1.2.3). При этом распределение плотности объемного заряда описывается соотношениями:

Электрическое поле может быть найдено из уравнения Пуассона:

(1.6.3)

При этом контактная разность потенциалов равна:

Поскольку функция P(x) меняет знак в точке X=0, а на границах перехода в поле равно нулю – напряженность электрического поля составляет:

(1.6.4)

Условие (1.6.4) соответствует электрической нейтральности p-n-перехода в целом:

(1.6.5)

Уравнения (1.6.2.б), (1.6.3), (1.6.5) могут быть решены относительно неизвестных lp0, и ln0, после чего из (1.6.4) определяется максимальное поле p-n-перехода.

1.7. Расчет параметров ступенчатого p-n-перехода.

Наиболее просто определяется параметры ступенчатого p-n-перехода, так как в этом случае функция N(x) имеет вид:

(1.7.1)

а значение граничных условий концентрации примеси и  известны:

Контактная разность потенциалов определяется из уравнений (1.6.2.б)

;

;

;

Подставляя (1.7.1), (1.6.3), (1.6.5), с учетом очевидного соотношения , получим:

(1.7.2)

Максимальная напряженность электрического поля определяется из (1.6.4).

Из (1.7.2) следует, что при условии Nэ>>NБ практически весь переход сосредоточен в области базы (1р0<<1n0 = 10).

Поскольку величина jк слабо логарифмически зависит от концентрации примеси в эмиттере, при Nэ>>NБ параметры перехода определяются практически только свойством базы:

(1.7.3)

ЧАСТЬ II. Расчет контактной разности потенциалов jk в p-n-переходе.

 – контактная разность потенциалов, где:

 – температурный потенциал,

 – потенциал эмиттерной области,

 – потенциал области базы, таким образом:

ЗАКЛЮЧЕНИЕ

Таким образом, в ходе проведения курсового исследования было установлено, что наиболее широко распространены следующие типы p-n-переходов: точечные, сплавные, диффузионные и эпитаксиальные, рассмотрены особенности технологических процессов изготовления этих переходов. Опираясь на исходные данные, была рассчитана контактная разница потенциалов, которая составила 0,113 (В). В третьей главе курсового проекта был рассмотрен эффект Ганна и его использование, в диодах, работающих в генераторном режиме. Были приведены различные типы работы диода: доменный режим, режимы ОНОЗ. Приведены конструкции генераторов, а так же усилителя на диоде Ганна, приведены расчеты, описаны принципы работы.

  Приложение.

Обозначения основных величин, принятые в работе.

Ec - энергия соответствующая дну запрещённой зоны

EF - фермиевская энергия

Ek - энергетическая ступень, образующаяся в p–n-переходе

Emax - максимальная напряжённость электрического поля

Ev- энергия соответствующая потолку валентной зоны

Fi - электрическая энергия

Fip (Fin) - электростатическая энергия в p (n)-области

j - плотность тока

jg0 - плотность тока термогенерации носителей заряда

jngp0 (jpgp0) - плотность дрейфового тока, текущего через p-n-переход из n-области (p-области) в p-область (n-область)

jngup0 (jpgup0) - плотность диффузионного тока, текущего через p-n-переход из n-области (p-области) в p-область (n-область)

jz0 - плотность тока рекомбинации носителей заряда

l0 - ширина р-n перехода.

ln0 (lp0) - ширина n (p) -области p-n-перехода

Ls - дебаевская длина

N - результирующая концентрация примеси

n (p) - концентрация электронов (дырок) в полупроводнике

n0 (p0) - равновесная концентрация электронов (дырок) в полупроводнике

Na (Nd) - концентрация акцепторной (донорной) примеси.

ni - собственная концентрация носителей заряда

nn (np) - концентрация электронов в n (р) области

nno (npo) - равновесная концентрация электронов в n (р) области

NЭ (NБ) - абсолютная величина результирующей примеси в эмиттере (базе)

P(x) - распределение плотности объёмного заряда

pp (pn) - концентрация дырок в р (n) области

ppo (pno) - равновесная концентрация дырок в р (n) области

pЭ (pБ) - плотность объёмного заряда

q, e - заряд электрона

T - температура окружающей среды

Vk - энергия контактного поля

Ε - напряженность электрического поля

ε - относительная диэлектрическая проницаемость полупроводника

ε0 - диэлектрическая постоянная воздуха

μnp) - подвижность электронов (дырок)

τε - время диэлектрической релаксации

φ - электрический потенциал

φk - контактная разность потенциалов

φT - температурный потенциал

    БИБЛИОГРАФИЧЕСКИЙ СПИСОК ИСПОЛЬЗОВАННОЙ
ЛИТЕРАТУРЫ.

1.   Анималу А. Квантовая теория кристаллических твердых тел. –М.: Мир, 1981;

2.   Блейкмор Дж. Физика твердого тела. –М.: Мир, 1988;

3.   Гранитов Г.И. Физика полупроводников и полупроводниковые приборы. –М.: Сов. радио, 1977;

4.   Гусев В.Г., Гусев Ю.М. Электроника: Учебное издание. –М.: Высшая школа, 1991;

5.   Давыдов А.С. Квантовая механика. –М.: Физматгиз, 1963;

6.   Савельев И.В. Курс общей физики. В 3 т. –М.: Наука, 1979. Т.3;

7.   Фистуль В.И, Введение в физику полупроводников. –М.: Высшая школа, 1984;

8.   Электроника. Энциклопедический словарь. –М.: Советская энциклопедия, 1991.

9.   Березин и др. Электронные приборы СВЧ. –М. Высшая школа 1985.


[1] Антизапирающим называют приконтактный слой, обогащённый свободными носителями заряда.

[2] Отношение изменения концентрации носителей заряда к расстоянию на котором это изменение происходит называется градиентом концентрации: grad n = ∆n/∆x = dn/dx

[3] Диффузионным током называют ток, вызванный тепловым движением электронов.

[4] Ток, созданный зарядами, движущимися в полупроводнике из-за наличия электрического поля и градиента потенциала называется дрейфовым током.

[5] Отсутствие вырождения характеризует существенная концентрация носителей заряда собственной электропроводности.


Информация о работе «Расчет параметров ступенчатого p-n перехода (zip 860 kb)»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 33382
Количество таблиц: 1
Количество изображений: 0

0 комментариев


Наверх