Содержание


Введение....................................................................................................................................

1. Энергетический расчёт радиолинии...............................................................................

1.1. Общие положения..........................................................................................................

1.2. Энергетический расчёт радиолинии спутник – Земля...........................................

1.2.1. Определение угла места и азимута приёмной антенны земной станции...

1.2.2. Определение мощности радиосигнала на входе приёмного тракта............

1.2.3. Определение мощности шума на входе приёмника и коэффициента

шума приёмника...................................................................................................

1.2.4. Определение реальной и пороговой чувствительности приёмника...........

2. Разработка структурной схемы СВЧ тракта приёмника..........................................

2.1. Общие положения.........................................................................................................

2.2. Сравнительный анализ структурных схем СВЧ трактов...................................

2.3. Выбор структурной схемы СВЧ тракта приёма.....................................................

2.4. Выбор количества преобразований частоты..........................................................

2.5. Малошумящий усилитель..........................................................................................

2.5.1. Транзисторные МШУ..............................................................................................

3. Разработка функциональной схемы СВЧ тракта........................................................

3.1. Характеристика элементов приёмного тракта.......................................................

3.2. Определение номиналов промежуточных частот и частот гетеродина.............

3.3. Выбор системы АРУ.....................................................................................................

3.4. Распределение усиления по трактам приёмника...................................................

3.5. Формулировка требований к приёмной системе...................................................

4. Выбор и расчёт СВЧ малошумящего усилителя.........................................................

4.1. Бесструктурные модели транзистора СВЧ..............................................................

4.2. Системы S- и S'- параметров транзистора................................................................

4.3. Расчёт маломощных усилителей на транзисторах................................................

4.3.1. Выбор типа транзистора.....................................................................................

4.3.2. Выбор схемы включения транзистора............................................................

4.3.3. Выбор режима работы транзистора.................................................................


4.3.4. Расчёт согласующих трансформаторов....................................................................

4.3.5. Выбор схемы питания..........................................................................................

4.4. Расчёт транзисторного МШУ........................................................................................

4.5. Составление топологической схемы усилителя........................................................

4.5.1. Резисторы...............................................................................................................

4.5.2. Kонденсаторы........................................................................................................

Вывод.........................................................................................................................................

Перечень ссылок.....................................................................................................................

3

5

5

5

6

10


10

14

15

15

15

18

20

21

23

26

26

28

30

31

33

35

35

35

38

38

38

39


41

45

46

55

57

58

64

65



МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ІНСТИТУТ ТЕЛЕКОМУНІКАЦІЙНИХ СИСТЕМ Кафедра засобів телекомунікацій Реєстраційний № __________ На правах рукопису Завідувач кафедри __________________ ( Ільченко М.Ю.) (підпис, дата) АТЕСТАЦІЙНА БАКАЛАВРСЬКА РОБОТА на тему: НВЧ тракт прийому земної станції супутникової системи зв'язку з напряму 6.0910 «Електронні апарати» Виконавець роботи Авдєєнко Гліб Леонідович _________________________ (підпис, дата) Науковий керівник: кандидат технічних наук, доцент Могильченко Микола Олександрович _____________________________ (підпис, дата) КИЇВ 2003 р. КАЛЕНДАРНИЙ ПЛАН
Пор.№ Назва етапів бакалаврської роботи Термін виконання етапів роботи Примітка
1 Отримання завдання 24.02.2003
2 Підготовка матеріалів 27.02.2003 – 15.03.2003
3 Вступ 16.03.2003 – 17.03.2003
4 Структурна схема тракту 18.03.2003 – 1.04.2003
5 Функціональна схема тракту 2.04.2003 – 15.04.2003
6 Малошумливий підсилювач 16.04.2003 – 1.06.2003
7 Оформлення роботи 5.06.2003 – 20.06.2003
Студент __________________________ (підпис) Керівник бакалаврської роботи ______________________________ (підпис)

Введение


Использование искусственных спутников Земли для связи и телевидения, оперативного и долгосрочного про­гнозирования погоды и гидрометеорологической обстанов­ки, для навигации на морских путях и авиационных трас­сах, для высокоточной геодезии, изучения природных ре­сурсов Земли и контроля среды обитания становится всё более привычным. В ближайшей и в более отдаленной перспективе разностороннее использование космоса и космической техники, в различных областях хозяйства значительно возрастёт.

Для нашей эпохи характерен огромный рост информации во всех сферах деятельности человека. Помимо прогрессирующего развития традиционных средств передачи информации – телефонии, телеграфии, радиовещания, возникла потребность в создании новых её видов – телевидения, обмена данными в автоматических системах управления и ЭВМ, передачи матриц для печа­тания газет.

Глобальный характер различных хозяйственных про­блем и научных исследований, широкая межгосударствен­ная интеграция и кооперация в производстве, торговле, научно-исследовательской деятельности, расширение обме­на в области культуры, привели к значительному росту международных и межконтинентальных связей, включая обмен телеви-зионными программами.

Традиционные средства связи в отношении их ви­дов, объёма, дальности, оперативности и надёжности пе­редачи информации будут непрерывно совершенствовать­ся. Однако дальнейшее развитие их встречает немалые затруднения как технического, так и экономического ха­рактера. Уже теперь ясно, что требования, предъявляе­мые к пропускной способности, качеству, надежности ка­налов дальней связи не могут быть полностью удовле­творены наземными средствами проводной связи и радиосвязи.

Сооружение дальних наземных и подводных кабель­ных линий занимает много времени. Они сложны и доро­гостоящи не только в строительстве, но и в эксплуата­ции, и в отношении дальнейшего развития. Обычные ка­бельные линии имеют к тому же сравнительно малую пропускную способность. Намного большую пропускную способность по сравнению со спутниковыми системами связи обеспечивают волоконно-оптические линии связи, но они более дорогостоящи.

Значительно большей пропускной способностью, даль­ностью действия, возможностью перестройки для различ­ных видов связи располагает радио. Но и радиолинии обладают определёнными недостатками, затрудняющими во многих случаях их применение.

Сверхдлинноволновые системы радиосвязи из-за огра­ниченности диапазона применяются обычно лишь для нужд транспорта, авианавигации и для специальных ви­дов связи.


Длинноволновые радиолинии из-за ограниченной про­пускной способности и сравнительно малого диапазона действия используются главным образом для местной ра­диосвязи и радиовещания.

Коротковолновые радиолинии обладают достаточной дальностью действия и широко применяются во многих видах связи различного назначения.

Новые пути преодоления свойственных дальней радио­связи недостатков открыли запуски искусственных спут­ников Земли (ИСЗ).

Практика подтвердила, что использование ИСЗ для связи, в особенности для дальней международной и меж­континентальной, для телевидения и телеуправления, при передаче больших объемов информации, позволяет устра­нить многие затруднения. Вот почему спутниковые си­стемы связи (ССС) в короткий срок получили небывало быстрое, широкое и разностороннее применение.


1. Энергетический расчёт радиолинии


1.1. Общие положения


Линия спутниковой связи состоит из двух участков: Земля – спутник и спутник – Земля. Основной их особенностью является большая физическая протяжённость и, как следствие этого, возникновение значительных потерь сигнала, обусловленных затуханием его энергии в пространстве. При этом сигнал подвержен влиянию многих дополнительных факторов: поглощения в атмосфере, фарадеевского вращения плоскости поляризации, рефракции, деполяризации и.т.д. На приёмное устройство спутника и земной станции кроме собственных флуктуационных шумов воздействуют разного рода помехи в виде излучения Космоса, Солнца, планет и атмосферных газов. Правильный учёт влияния всех факторов позволяет оптимально спроектировать систему, обеспечить её уверенную работу в наиболее трудных условиях и в то же время исключить излишние энергетические запасы, которые могут привести к неоправданному увеличению сложности земной и бортовой аппаратуры.



Информация о работе «СВЧ тракт приёма земной станции спутниковой системы связи»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 65231
Количество таблиц: 5
Количество изображений: 0

Похожие работы

Скачать
56087
1
6

... устройства воздействуют помехи в виде излучений космоса, Солнца, Земли и др. планет. Правильный и точный учет всех особенностей спутниковой связи позволяет выполнить оптимальное проектирование системы связи, обеспечить её надежную работу в наиболее сложных условиях и в то же время исключить излишние энергетические затраты, приводящие к неоправданному усложнению наземной и бортовой аппаратуры. В ...

Скачать
62636
2
19

... Прием сигналов осуществляется в г. Гродно с географическими координатами ψ=53,700 с.ш., φз=23,800 в.д. с спутника HotBird 6/7A (130 з.д.) Большинство современных систем индивидуального и коллективного приёма программ спутникового вещания оснащены опорно-поворотным устройством (ОПУ) для оперативного наведения антенны на заданный ИСЗ. Наиболее простым механизмом перестройки антенны ...

Скачать
22170
2
0

... õ Тогда любой из интервалов: входящих в алгоритм (1), можно представить через (2) по формуле: Vi=Xo*cos(jj-jo) +Yo*sin(jj-jo) (3), следовательно общая схема когерентного демодулятора сигналов с многопозиционной ФМн может быть представлена в следующем виде: В этой схеме автономный генератор и фазовращатель на p/2 вырабатывают квадратурные опорные колебания с произвольной начальной ...

Скачать
29964
10
15

... F, которое учитывает потери в застройке . Расчитываем длину волны, распространяющейся в радиоканале Расчитываем высоту подъёма антенны радиопередатчика 5. ПРОЕКТИРОВАНИЕ УСТРОЙСТВ СУММИРОВАНИЯ И РАЗДЕЛЕНИЯ СИГНАЛОВ НА ВХОДЕ АНТЕННО-ФИДЕРНОГО ТРАКТА РАДИОРЕЛЕЙНЫХ И СПУТНИКОВЫХ УСТРОЙСТВ При передаче сигнал с частотой f’4 от передатчика ПД4 (рис. 5.1) через полосовой фильтр ...

0 комментариев


Наверх