1 случай
U1= U2= U1 ® “1”
(б-э)VT1 смещены в обратном направлении.
(б-к)VT1 смещён в прямом направлении. Þ VT1 работает в активном инверсном режиме. Потенциал т. а достаточен, чтобы открыть переход (б-к)VT1, (б-э)VT2, (б-э)VT5 и (б-э)VT4.
При открытом p-n переходе
VT2 открыт и насыщен
Ток протекает по цепи: «+»ИП ® R2 ® (к-э)VT2о.н. ® R3 ®VT5 ® корпус
÷ R4 ö
VT4 открывается напряжением Uc. Оно создается после открытия VT2 и VT5 током эмиттера VT2.
Корректирующая цепочка предназначена для защиты от статических помех (для увеличения ) по сравнению с ЛЭ без корректирующей цепочки за счет изменения формы. В интересах повышения помехоустойчивости используется VT2 (это VD4 в схеме ДТЛ)
(б-э)VT1 ® VD4 ДТЛ
(б-э)VT2 ® VD3 ДТЛ
Uколлектора насыщения VT4=0,1В
2 случай
Если на один из входов подать уровень напряжения, соответствующим логическому «0», то через переход (б-э)VT1 ток протечет по цепи: «+»ИП ® R1 ® (б-э)VT2 ® X1 ® корпус
Ua = U(б-э)откр.VT1 + UX1 = 0,8 + 0,2 = 1В
Uk = Ua – U(к-э)VT1 = 1 – 0,1 = 0,9В
VT2-VT4 – закрыты
При VT2 закрытом Uб » UИП = 5В. VT3, VD3 открыты, Þ Uy = UИП – U(б-э)VT3 – UVD3о = = 5–1,6 = 3,4В
Параметры ТТЛ со сложным инвертором
Основным параметром в статическом режиме является , , Рпот.ср. (средняя потребляемая мощность).
на VT3 мало Þ Kраз высок!
Рис. 6
при X2
ЛЭ включен, т.е. VT2 и VT4 открыты и насыщены. VT3 и VD3 закрыты.
При Uвых = U0 Þ
ЛЭ ТТЛ-типа с открытым коллектором
Применение: в случае включения в выходной каскад таких компонентов, как реле, светодиод, трансформатор и т.д. и в случае включения резистора в коллекторную цепь с подачей более высокого напряжения питания (до 30В).
Рис.7
ЛЭ ТТЛ-типа с 3-мя состояниями выхода
Roff — высокое выходное сопротивление
Рис.8
Фрагмент таблицы истинности:
X1 | X2 | X3 | Y |
1 | 1 | 1 | Roff |
0 | 1 | 0 | 1 |
Состав схемы:
1. Коньюнктор (VT1, R1). В точке 1 .
2. Сложный инвертор с корректирующей цепочкой: фазоразделительный каскад, корректирующая цепочка, ЭП.
Кроме этих компонентов в схему включены VT6, R6, R7. Коллекторная цепь VT6 включена в коллекторную цепь VT2 в точке а. Это необходимо для реализации третьего состояния схемы. Рассмотрим принцип работы с использованием таблицы истинности. Пусть на входах высокий уровень (1 поз. таблицы). В этом случае VT6 открыт и насыщен. Сопротивление VT6 мало (составляет rвых VT6 = rн =5..20 Ом). Из этого следует, что U(к-э)нVT6 @ 0,2В. Þ Ua = 0,2В. Определим, какое U в т.1 Uк = UбVT2. VT1 – активный инверсный режим. U1 > Ua Þ VT2 – активный инверсный режим. Ток течет по цепи:
«+»ИП ® R1 ® б-к VT1® б-к VT2 ® к-э VT6 ® корпус ® «–»ИП.
U1 = U(б-к)оVT2 + U(к-э)насVT6 = 1В
В этом случае закрыт VT5. Дальше цитата Тимошенко В.С.: «А в каком же состоянии VT4 и VD1? Да они же закрыты!!!». Þ на выходе высокое сопротивление Roff.
2 позиция таблицы. VT6 закрыт, Rк-э высокое.
Вывод: в случае подачи на вход X3 U0 при положительной логике VT6 закрыт и схема ЛЭ может иметь 2 состояния – включенное и выключенное.
Базовые ЛЭ ЭСЛ-типа 500-ой серии.
Достоинства: ЛЭ ЭСЛ-типа применяются в быстродействующих устройствах, т.к. она (ЭСЛ) имеет малое tздр (время задержки). Это обусловлено:
(1), где Uл – логический перепад. (Примечание. Для ТТЛ с простым инвертором )
Если в (1) при Cн= const уменьшить Uл, то tздр уменьшается.
ЛЭ ЭСЛ имеет малый уровень логического перепада, дост. Большой ток зарада Cпар, Þ длительность положительного перепада схемы мала. Рассмотрим состав, принцип работы и назначение элементов схемы. При положительной логике U1 = – 0,9В, U0 = – 1,7В, опорное напряжение .
«ИЛИ–ИЛИ–НЕ»
Рис.9
1. Токовый переключатель.
2. Источник опорного напряжения.
3. Эмиттерные повторители.
1. VT1, VT2 – левое плечо дифференциального усилителя.
R1, R2, R5
R3, R4 – сопротивления утечки.
На б VT1 и VT2 подаются входные сигналы.
На б VT3 поступает опорное напряжение –1,3В.
Uл = U1 – U0 = 0,8В
2. Делитель R7R8, диоды VD1 и VD2, ЭП VT4R6, VT3.
3. VT5R9 (R9 и R10 в схему ЛЭ в интегральном исполнении не входят).
VT6R10
U(б-э)оVT5,6 = 0,8В
Работа
X1 = X2 = 0
U1 = – 0,9В
U0 = – 1,7В
Uоп = –1,3В
VT1 и VT2 закрыты. Iк1,2 = 0. VT3 открыт. При этом Uc=–(Uоп) + (–U(б-э)VT3) = (–1,3) + (–0,75) = = –2,05В
Что с VT3? Проверим: (Uб – Uэ)VT3 = (–1,3) – (–2,05) = 0,75 — он открыт.
(Uб– Uэ)VT1,2 = (–U0) – (–Uc) = (–1,7) – (–2,05) = 0,35В < Uэз = 0,6В Þ VT1,2 – закрыты.
Т.к. через R1 при закрытых VT1 и VT2 протекает ток IбVT5 (ЭП) по цепи:
«+»ИП ® R1 ® б-э VT5® R9 ® «–»ИП
Режим работы VT5 подобран так, что он всегда открыт и через него течет ток:
«+»ИП ® R1 ® к-э VT5 ® R9 ® «–»ИП
Uб-эVT5o = –0,8В
Uy1 = (Ua + Uб-эVT5) = (–0,1) + (–0,8) = –0,9В ® U1 = – 0,9В
Uc = Uб-эVT3o + Uоп = (–0,75) + (–1,3) = –2,05В
через R2 протекает ток IкVT3, IбVT6. Т.о. создается напряжение Uб = (IкVT3 + IбVT6) R2 = –0,9В
Uy2 = Uб + Uб-эVT6o = (–0,9) + (–0,8) = –1,7В
ИЛИ–НЕ В этом случае y2 = «0»
ИЛИ y1 = «1»
X1 = X2 = 1
В этом случае VT1,2 открыты, но ненасыщены Þ отсутствует избыточность зарядов в цепи базы Þ tздр мало.
VT3 закрыт
Uc = UX1,2 + Uб-эVT1,2o = (–0,9) + (–0,75) = –1,65В. Через R2 протекает только Iб.
y1 = «0»
y2 = «1»
Источник опорного напряжения предназначен для создания стабильного напряжения (–1,3В). Включаются R7, R8.
Т.к. температура изменяется, то требуется температурная компенсация VD1,2, VT4, R6
VD1,2 — для термокомпенсации (для обеспечения пропорционального изменения тока делителя). В точке d в зависимости от toC меняется потенциал.
Работа источника опорного напряжения (ИОН).
Если соединить базу VT3 с точкой d и убрать VD1,2 (закоротить), т.е. исключить VT4 (ЭП) и R6, чтобы мы имели .
Когда VT3 открыт, то имеем недостаток: через R7 кроме Iдел протекает IбVT7 Þ
(Iдел + IбVT3) R7 = , IбVT3 = I ( to )
Как видно, постоянство опорного напряжения на базе VT3 не обеспечивается. Для ликвидации этого недостатка вкл. VT4R6. Тогда через делитель R7R8 всегда протекает ток равный Iдел + IбVT4. Но и в этом случае не обеспечивается стабильность напряжения, т.к. IбVT4 = I ( to ). Существует необходимость ввести диоды VD1,2, в которых R меняется в зависимости от изменения toÞ изменяется ток Iдел. Этим компенсируется изменение токов IбVT4 и IбVT3 от температуры и обеспечивается температурная стабилизация.
Определим потенциал т. d.
Т.к. UбVT3 = Ud + Uб-эVT4, то
Ud=–Uб-эVT4 + UбVT3 = –(Uоп) – (–Uб-эVT4) = –1,3 – (–0,75) = –0,55В
÷Uоп
... , шина выполнена в виде двух щелевых разъёмов с шагом выводов 2.54 мм. В подмножестве ISA-8 используется только 64-контактный слот (ряды C, D). Как указано в официальной спецификации, шина ISA обеспечивает возможность обращения к 8 - ил 16-битным регистрам устройств, отображённым на пространства ввода-вывода. В PC была принята 10-битная адресация ввода-вывода, при которой линии адреса A [15; 10] ...
... К572ПВ4 Рис 5.5. Условное обозначение ИМС К561ЛН2 Микросхема представляет собой 6 буферных инверторов (элементов НЕ). Назначение выводов: 1, 3, 5, 9, 11, 13—входы; 2, 4, 6, 8, 10, 12 — выходы; 7 — общий; 14 — напряжение питания. Значительно упростить построение системы сбора может СБИС однокристальной аналогово-цифровой системы типа К572ПВ4. Структурная схема однокристальной системы сбора и ...
... ? 8. Какими программами можно воспользоваться для устранения проблем и ошибок, обнаруженных программой Sandra? Раздел 3. Автономная и комплексная проверка функционирования и диагностика СВТ, АПС и АПК Некоторые из достаточно интеллектуальных средств вычислительной техники, такие как принтеры, плоттеры, могут иметь режимы автономного тестировании. Так, автономный тест принтера запускается без ...
... одноканального устройства контроля температуры для контроля и измерения температур силовых элементов, отвечающих за управление ДПТ, в диапазоне от 0 до 100°С. 1.4 Режимы работы устройства Одноканальное устройство контроля температуры будет работать в одном режиме. Измерение по прерываниям. В этом режиме цикл чтения информации с устройства будет осуществляться по прерыванию основной ...
0 комментариев