4.3 Расчет эквивалентной схемы транзистора

Так как рабочие частоты усилителя больше частоты, то входная ёмкость не будет влиять на характер входного сопротивления транзистора на высоких частотах, а будет влиять индуктивность выводов транзистора. Ёмкость можно исключить из эквивалентной схемы, а индуктивность оставить. Эквивалентная однонаправленная модель представлена на рисунке (4.5). Описание такой модели можно найти в [4].

Рисунок 4.5 – Однонаправленная модель транзистора

Рисунок 4.6 – Схема Джиаколетто

 

Параметры эквивалентной схемы не даны в справочнике, но они совпадают с параметрами схемы транзистора, предложенной Джиаколетто [1,4] (рис.4.6).

Входная индуктивность:

(4.14)

–индуктивности выводов базы и эмиттера.

Входное сопротивление:

 , (4.15)

где , причём ,

- напряжение, при котором измерялось

 – берётся из справочника.

Крутизна транзистора:

,  (4.16)

где

- ток в рабочей точке в милиамперах

Выходное сопротивление:

. (4.17)

Выходная ёмкость:

. (4.18)

Тогда в соответствие с этими формулами получаются следующие значения элементов эквивалентной схемы:

Ом

А/В

 Ом

 Ом

4.4 Расчет цепей термостабилизации

Существует несколько видов схем термостабилизации[5,6]. Использование этих схем зависит от мощности каскада и требований к термостабильности. В данной работе рассмотрены следующие схемы термостабилизации: эмиттерная, пассивная коллекторная, активная коллекторная.

4.4.1 Эмиттерная термостабилизация

Рассмотрим эмиттерную термостабилизацию, схема которой приведена на рисунке (4.7). Метод расчёта и анализа эмиттерной термостабилизации подробно описан в [5,6].

Рисунок 4.7 – Схема эмиттерной термостабилизации

При расчёте элементов схемы выбирается падение напряжения Uэ на сопротивлении Rэ (в интервале 2-5В), расчитываются ток делителя , напряжение питания, сопротивления . Так как взят дроссельный каскад, то координаты рабочей точки равны Uкэо=10.71В и Iко=0.154А.

Выбрано напряжение Uэ=3В.

Ток базового делителя находится по выражению:

(4.19)

где

Сопротивления  определяются выражениями:

;  (4.20)

; (4.21)

. (4.22)

Напряжение питания :

 (4.23)


После подстановки получаются следующие результаты:

Ом

 Ом

 Ом

Рассеиваемая мощность на Rэ:

 (4.24)

Тогда мощность Pэ равна:

4.4.2 Коллекторная пассивная термостабилизация

Этот вид термостабилизации [5,6] применяется в маломощных каскадах и менее эффективен, чем две другие, потому что напряжение отрицательной обратной связи, регулирующее ток через транзистор подаётся на базу. Расчет начинают с того, что выбирается напряжение Urк в интервале 5-10В. Потом расчитываются напряжение питания, ток базы Iб, сопротивления Rб и Rк по выражениям:

(4.25)

Рисунок 4.8 – Схема коллекторной пассивной термостабилизации

 (4.26)

  (4.27)

(4.28)

Результатом подстановки будет:

Ом

 Ом

Напряжение Еп=Uкэо, потому что при постоянном токе Urк равно нулю.

 Рассеиваемая мощность при такой термостабилизации находится по формуле:

(4.29)

Тогда получится:

 4.4.3 Коллекторная активная термостабилизация

В активной коллекторной термостабилизации используется дополнительный транзистор, который управляет работой основного транзистора. Эта схема применяется в мощных каскадах, где требуется высокий КПД. Её описание и расчёт можно найти в [5,6].

Рисунок 4.9 – Схема активной коллекторной термостабилизации

Вначале, при расчете выбирается транзистор VT1. В качестве VT1 выбран КТ361А [3]. Основные технические параметры приведены ниже.

Электрические параметры:

-статический коэффициент передачи тока в схеме с ОЭ ;

-емкость коллекторного перехода при  В пФ.

Предельные эксплуатационные данные:

-постоянное напряжение коллектор-эмиттер В;

-постоянный ток коллектора мА;

-постоянная рассеиваемая мощность коллектора при Тк=298К Вт;

После этого выбирается падение напряжения на резисторе  из условия (пусть В), затем производится расчёт по выражениям:

; (4.30)

; (4.31)

; (4.32)

; (4.33)

,  (4.34)

; (4.35)

; (4.36)

  (4.37)

(4.38)

После подстановки получаем следующие значения:

 Ом

А

 Ом

 

 

Ом

Ом

Рассеиваемая мощность на сопротивлении R4 определяется по выражению:

(4.39)

После подстановки имеем:

В результате, если сравнить все три вида схем термостабилизации, то видно, что лучше взять активную коллекторную, так как она более экономична. К тому же, у высокочастотных транзисторов на высокой частоте эмиттер заземлен, поэтому эмиттерная термостабилизация не используется.


Информация о работе «Усилитель мощности широкополосного локатора»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 29869
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
17442
6
12

... 1.6 раза  (Ом); Rэ= (Ом); ; ; Общий уровень частотных искажений равен 3 дБ, то Yв для одного каскада примем равным: ; ; Подставляя все данные в (4.1.5) находим fв: Рисунок 4.1.1- Усилитель приёмного блока широкополосного локатора на четырёх каскадах. 4.2. Расчёт полосы пропускания входного каскада Все расчёты ведутся таким же образом, как и в пункте 4.1 с той лишь разницей что берутся ...

Скачать
17817
5
0

... раза  (Ом); Rэ= (Ом); ; ; Общий уровень частотных искажений равен 3 дБ, то Yв для одного каскада примем равным: ; ; Подставляя все данные в (4.1.5) находим fв: Рисунок 4.1.1- Усилитель приёмного блока широкополосного локатора на четырёх каскадах. 4.2. Расчёт полосы пропускания входного каскада Все расчёты ведутся таким же образом, как и в пункте 4.1 с той лишь разницей что ...

Скачать
25575
33
18

... Лит Масса Масштаб Изм Лист Nдокум. Подп. Блок усиления мощности Выполнил Авраменко нелинейного локатора Проверил Титов Схема электрическая принципиальная Лист Листов ...

0 комментариев


Наверх