2. Математическое моделирование фотоэлектромагнитного эффекта
В данной части работы, пользуясь основными формулами ФМЭ, я рассмотрю зависимость тока ФМЭ от напряженности магнитного поля, интенсивности света, параметров материала и геометрических параметров пластины.
В слабых магнитных полях () ток ФМЭ увеличивается пропорционально напряженности магнитного поля. Это объясняется тем, что при воздействии сильного магнитного поля траектории носителей между столкновениями сильно искривлены и скорость диффузии меньше, чем при отсутствии магнитного поля. Это явление отражено в формуле, определяющей зависимость эффективных значений диффузионной длины и коэффициента диффузии от магнитного поля:
(1)
, где - время жизни, n, p – полная концентрация носителей, и - величины, определяемые формулой:
(2)
(3)
, где D – эффективный коэффициент биполярной диффузии.
Зависимость D и L от напряженности магнитного поля проявляется по-разному при малой и большой скорости поверхностной рекомбинации. При слабой поверхностной рекомбинации (S<<D/L) получаем:
(4) ,
где q – заряд электрона, g0 – число электронных пар, генерируемых светом за 1 секунду на единице поверхности, Ln – диффузионная длина электрона, и - соответственно, подвижности электронов и дырок, Н – напряженность магнитного поля, с – скорость света в вакууме.
При этом,
(5)
, где kb– постоянная Больцмана.
Находим g:
(6)
, где g - число электронных пар, генерируемых светом за 1 секунду в единице объема, - коэффициент поглощения, - квантовый выход, x2 принимаем равным Ln, т.к. основная часть тока течет в слое, приблизительно равном диффузионной длине.
Основным параметром фотоэлектромагнитного эффекта, пригодным для измерения, является ток короткого замыкания ФМЭ. Целью математического моделирования является нахождение оптимальных параметров для дальнейшей реализации данного эффекта в различных устройствах.
Исходные данные для математического моделирования:
q = 1,6∙10-19 Кл, = 6,5 м2/В∙с, =0,07 м2/В∙с, с = 3 ∙108 м/с, kb= 1,38 ∙10-23 Дж ∙ К-1, Т = 300 К, =10-3 с, = 1, = 103 см-1, = 5,55∙10-7 м.
IФМЭ,
А
H, A/м
Рис. 2. Семейство зависимостей тока короткого замыкания ФМЭ от магнитного поля при малой скорости поверхностной рекомбинации при различной интенсивности света J, фотонов/м2∙с: J1 = 1017, J2 = 2∙1017,
J3 = 3∙1017 .
Из графика видно, что при ток практически не увеличивается. Однако для выполнения данного условия необходимо создать большую напряженность магнитного поля – порядка 108 А/м, что не всегда выполнимо. Детектирование тока короткого замыкания ФМЭ можно проводить и при гораздо меньших напряженностях магнитного поля – 500…1000 А/м. При этом ток короткого замыкания изменяется в пределах 2…10 мкА. Такой режим более благоприятен для использования в приборах функциональной электроники.
IФМЭ, А
Н, А/м
Рис. 3. Семейство зависимостей тока короткого замыкания ФМЭ от магнитного поля при малой скорости поверхностной рекомбинации, J = 1017 фотонов/м2∙с.
IФМЭ, А
Н, А/м
Рис. 4. Семейство зависимостей тока короткого замыкания ФМЭ от магнитного поля при большой скорости поверхностной рекомбинации при различной интенсивности света J, фотонов/м2∙с: J1 = 1017, J2 = 2∙1017,
J3 = 3∙1017 .
При сильной поверхностной рекомбинации фотоэлектромагнитный ток оказывается меньше по величине:
(7)
В случае большой поверхностной рекомбинации ток ФМЭ сначала растет пропорционально магнитному полю, достигает максимума при и убывает обратно пропорционально Н в сильных магнитных полях. При малой поверхностной рекомбинации ток ФМЭ стремится к насыщению.
Зависимость эффекта от интенсивности света более проста, чем зависимость от напряженности магнитного поля. Ток ФМЭ пропорционален освещенности как при слабом, так и при сильном фотосигнале:
(8)
(9)
Однако в случае слабой и сильной освещенности отличаются такие параметры, как эффективная диффузионная длина и др., поэтому наклон прямой IФМЭ(J) различен при слабой и сильной освещенности.
В толстом образце по мере уменьшения коэффициента поглощения генерация становится все более равномерной по глубине, поверхностная концентрация носителей уменьшается и ФМЭ убывает согласно формуле:
(10)
... виды эквивалентности и учитывая все характерные черты четвертого и пятого типа, можно прийти к такому выводу, что данные виды эквивалентности характерны для информативного перевода, в частности, офисной документации, для которой характерны: высокая степень параллелизма в структурной организации текста; максимальная соотнесенность лексического состава (в переводе можно указать соответствия всем ...
0 комментариев