Электрорадиоматериалы Методические указания к лабораторным работам

 

Санкт-Петербург

2000

УДК 621.315.4

Составители: ст. преп. Г. И. Иванова, доценты Г. А. Татарникова, Б. В. Фролов, С.А. Гусев.

Подготовка к переизд.: доценты С.А. Гусев, И.К. Желанкина, Л.Ф. Погромская; под ред. С.А.Гусева.

Электрорадиоматериалы. Методические указания к лабораторным работам./ Под ред. С.А.Гусева. Изд. второе пер. и доп.; Балт. гос. техн. ун -т, СПб., 2000, с.

Ил. 26, табл. 18.

©

Содержание

Работа 1. Исследование электрических свойств проводниковых материалов........ 4

1. Краткие сведения из теории...................................................................................................................................... 4

2. Описание экспериментальной установки......................................................................................................... 6

3. Порядок проведения работы....................................................................................................................................... 6

4. Оформление отчета........................................................................................................................................................ 7

Работа 2. Исследование свойств терморезисторов............................................................................. 7

1. Краткие сведения из теории....................................................................................................................................... 7

2. Описание экспериментальной установки.......................................................................................................... 9

3. Порядок выполнения работы...................................................................................................................................... 9

4. Оформление отчета...................................................................................................................................................... 10

Работа З. Исследование свойств варисторов......................................................................................... 11

1. Краткие сведения из теории..................................................................................................................................... 11

2. Описание экспериментальной установки........................................................................................................ 12

3. Порядок выполнения работы................................................................................................................................... 13

4. Оформление отчета...................................................................................................................................................... 14

Работа 4. Исследование свойств фоторезисторов............................................................................... 14

1. Краткие сведения из теории..................................................................................................................................... 14

2. Описание экспериментальной установки........................................................................................................ 16

3. Порядок проведения работы..................................................................................................................................... 16

4. Оформление отчета...................................................................................................................................................... 17

Работа 6. Исследование свойств сегнетоэлектриков..................................................................... 17

1. Краткие сведения из теории..................................................................................................................................... 17

2. Описание экспериментальной установки........................................................................................................ 19

3. Порядок выполнения работы................................................................................................................................... 19

4. Оформление отчета...................................................................................................................................................... 21

Работа 7. Исследование свойств ферромагнитных материалов.......................................... 21

1. Краткие сведения из теории..................................................................................................................................... 21

2. Описание экспериментальной установки........................................................................................................ 23

3. Порядок выполнения работы................................................................................................................................... 24

4. оформление отчета...................................................................................................................................................... 25

Работа 1. Исследование электрических свойств проводниковых материалов

Цель работы:

1) определение удельных сопротивлений проводниковых материалов низкого и высокого сопротивления и их зависимости от температуры;

2) определение зависимости величины электродвижущей силы термопар от температуры;

3) оценка длины свободного пробега электронов в раз­личных проводниковых материалах.

1. Краткие сведения из теории

Основные свойства проводниковых материалов характе­ризуются величиной удельного сопротивления электриче­скому току r, температурным коэффициентом удельного электрического сопротивления ar (ТКr), величиной термоэлектро­движущей силы ЕТ.

Наилучшими проводниками электрического тока являются металлы. Механизм протекания тока в металлах, находя­щихся в твердом или жидком состояниях, обусловлен дви­жением свободных электронов, поэтому металлы являются материалами с электронной электропроводностью.

Электропроводность металлов зависит от совершенства кристаллической решетки: чем меньше дефектов имеет кристаллическая решетка, тем выше электропроводность. Поэтому чистые металлы обладают наименьшими значениями удельного сопротивления, а сопротивление сплавов всегда выше сопротивлений металлических компонентов, входящих в их состав.

 Металлические проводниковые материалы могут быть разделены на проводники малого сопротивления (r £ 0,1 мкОм×м) – медь, серебро, алюминий и т. д., и проводники (сплавы) высокого сопро­тивления. Последние в свою очередь делятся на термостойкие сплавы для электронагревательных приборов – ни­хром, хромаль, фехраль и др., и термостабильные сплавы для образцовых резисторов – манганин, константан.

B соответствии с электронной теорией металлов:

,  (1.1)

где mo = 9,109×10-31 кг, e = 1,602×10-19 Кл – масса покоя и заряд электрона; » 105 м/с – средняя скорость теплового движения электронов; no = 1028 м-3 — число электронов в единице объема; lср – средняя длина свобод­ного пробега электронов.

Величина удельного электрического сопротивления проводников в основном зависит от средней длины свободного пробега электронов lср. С повышением тем­пературы амплитуда колебаний узлов кристаллической решетки увеличивается, средняя длина свобод­ного пробега электронов уменьшается (рис.1.1), а удельное сопротивление возрастает. произведение удельного сопро­тивления на величину средней длины свободного пробега электрона является величиной постоянной r×lср = а = const.

Температурным коэффициентом удельного сопротивления ar(ТКr) называется относительное изменение удельного сопротивления при изменении температуры на один Кельвин (градус):

(1.2)

Зависимость удельного сопротивления от температуры вызывается не только уменьшением длины свободного пробега электронов, но и увеличением линейных размеров про­водника. Поэтому ar имеет две составляющие: ar = aR +al,  (1.3)

где aR – температурный коэффициент сопротивления в дан­ном интервале температур; al – температурный коэффициент линейного расширения проводника, значения которого при­ведены в табл. 1.1. У чистых металлов ar>> al, поэтому для них ar» aR. для термостабильных металлических сплавов такое приближение не справедливо.

Таблица 1.1

Металлы и сплавы

al ×10-4, K-1

Медь 0,167
Константан 0,17
Манганин 0,181
Нихром 0,163

Температурный коэффициент электрического сопротивле­ния (ТКR) резистора определяется выражением

, (1.4)

где Ro –сопротивление проводника при температуре То. Производная  определяется по касательной к кривой R(T) (рис.1.2). Для определения производной dR/dT = dR/dq (Т – температура в градусах Кельвина, q – в °С) строится зависимость R(q) (рис. 1.2). При заданной температуре (точка A) проводится касательная к кривой R(q), на кото­рой выбирается участок ab произвольной длины. Производ­ная определяется выражением dR/dq » DR/Dq.

экспериментально удельное электрическое сопротивление определяется по формуле:

, (1.5)

где R – электрическое сопротивление проводника, S, I – площадь поперечного сечения и длина проводника.

При соприкосновении двух различных металлов между ними возникает контактная разность потенциалов. Причиной этого являются неодинаковые значения работ выхода элек­тронов и различные значения концентрации свободных элек­тронов в соприкасающихся металлах.

Термопарой называется устройство, содержащее спай двух проводников или полупроводников. Если спай двух металлов А и В (термопара) имеет температуру T1, а свободные (неспаянные) концы темпера­туру T2, причем T1>T2, то между свободными концами возникает термо-э.д.с.

, (1.6)

где – коэффициент термо-э.д.с. или относительная удельная термо-э.д.с., k=1,381×10-23 Дж/К – постоянная Больцмана, е – заряд электрона, п1, п2 – концентрации свободных электронов в соприкасающихся металлах.

В термопарах используют проводники, имеющие большой и стабильный в рабочем диапазоне температур коэффициент термо-э.д.с.

2. Описание экспериментальной установки

Экспериментальная установка изображена на рис. 1.3. Образцы проволочных резисторов R1–R4, изготовленные из меди, константана, манганина и нихрома, металлопленочный резистор МЛТ-1 (R5) и термопары ТП1–ТП3 поме­щаются в термостат 1 с термометром 2. Электрическое сопро­тивление резисторов измеряется омметром 3, э.д.с. термопар – милливольтметром 4. Пере­ключатели П1 и П2 размещены на плате 5 и позволяют поочередно подключать к измерителям исследуемые проводники и термопары. Там же приведена таблица с указанием вида, длины и сечения исследуемых проводников. 3. Порядок проведения работы

Внимание: все измерения по последующим пунктам проводятся одновременно.

3.1. Определение удельного электрического сопротивления проводников и вычисление aR, ar.

Проводники, поме­щенные в термостат, поочередно подключить к входным зажимам омметра и замерить их сопротивления сначала при комнатной температуре, а затем при повышении температуры до 90 °С с шагом 10 оС. Результаты измерений записать с максимальной точностью в табл.1.2.

Таблица 1.2

проводник

q, oС

20 30 40 50 60 70 80 90
медь

R1

r1

aR1

ar1

Константан

R2


Информация о работе «Электрорадиоматериалы. Методические указания к лабораторным работам»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 54439
Количество таблиц: 17
Количество изображений: 0

0 комментариев


Наверх