Электропривод с тиристорным управлением. Как отмечалось, в

Разработка логической схемы управления двустворчатых ворот судоходного шлюза
123264
знака
9
таблиц
0
изображений

3.5. Электропривод с тиристорным управлением. Как отмечалось, в

электроприводах гидротехнических сооружений стали находить примене­ние полупроводниковые силовые и оперативные элементы и устройства. Так, например, для управления асинхронными двигателями и регулиро­вания их частоты вращения в приводах опдъемно-опускных ворот ( зат­воров ) и двустворчатых ворот используются тиристерные преобразова­тели частоты ( ТПЧ ), тиристорные станции управления и регулирова­ния ( ТСУР ) и пускорегулирующие безконтактные устройства ( ПРБУ ).

Принципиальная схема силовой части электропривода с ПРБУ и век­торная диаграмма э.д.с. работы системы приведены на (рисунке 31), а и б.

Пускорегулирующее бесконтактное устройство состоит из ревесного бесконтактное устройство состоит из реверсного безконтактного ком­мутатора БК, блока динамического торможения БДТ, асинхронного вен­тельного каскада АВК, сглаживающих реакторов L и блоков управления и защиты ( последние на схеме не показаны ). Безконтактный коммута­тор состоит из четырех силовых тиристорных блоков, в каждый из ко­торых входят по два встречно-параллельно включенных тиристора. Два блока коммутатора служат для включения двигателя в прямом направле­нии вращения, а два других - в обратном. Третья фаза двигателя включенна в сеть напрямую ( не коммутируется ). Блок динамического торможения тиристорный работает совместно с одним плечем тиристор­ного блока коммутатора, которое обеспечивает однополупериодный вып­рямленный ток для динамического торможения. Блок динамического тор­можения состоит из симметричного тиристора V1, шунтирующего нерабо­тающую фазу двигателя, и рабочего тиристора V2, шунтирующего две другие фазы при непроводящем полупериоде работы коммутатора в режи­ме торможения.

Асинхронно-вентильный каскад включает асинхронный двигатель с фазным ротором М, выпрямитель U, инвертор И, ведомый сетью, и сгла­живающий дроссель L. Выпрямитель собран из силовых неуправляемых вентильных блоков по мостовой схеме, но из силовых управляемых ( тиристорных ) блоков.

Принцип действия ПРБУ основан на работе асинхронного вентильного каскада со звеном постоянного тока. Регулирование частоты вращения привода здесь обеспечивается введением добавочного э.д.с. в цепь ротора. Как видно из векторной диаграммы, при работе вентильного каскада введение в цепь выпрямленного тока ротора Ip внешней элект­родвижущей силы Еи, направленной навстречу току, меняет значение результирующей э.д.с. ротора Ер, а следовательно, тока и угла сдви­га между током и э.д.с. Внешняя электродвижущая сила, создаваемая инвертором, направленная навстречу току, и, следовательно, ее век­тор сдвинут относительно основной э.д.с. ротора на угол ( 180 - f ). Внешнюю э.д.с. возможно изменить выбором угла опережения откры­вания тиристоров инвертора, обеспечивая изменение результирующей э.д.с. тока ротора и угла сдвига между ними. Изменение тока ротора вызовет изменение вращающего момента электродвигателя, а при посто­янном моменте сопротивления и изменение частоты вращения двигателя.

При замкнутой системе регулирования в случае отрицательной обрат­ной связи по частоте вращения, управляя углом опережения открывания тиристоров, в такой схеме обеспечивается поддержанием постоянной частоты вращения при изменении момента сопротивления на валу. Меха­нические характеристики в рабочем диапазоне нагрузки при этом ока­зываются такими же, как и в системе Г-Д. Диапазон регулирования достигает 20:1 и выше. Первый опыт применения ПРБУ в приводах подъ­емно-опускных ворот ( затворов ) и двустворчатых ворот показал, что такие системы обладают хорошей регулирующей способностью и высокой надежностью и экономичностью, однако имеют сложную систему управле­ния.

4. БЕСКОНТАКТНЫЕ АППАРАТЫ И СТАНЦИИ УПРАВЛЕНИЯ.

Коммутационные контактные аппараты имеют низкую надежность и сдерживают дальнейшее развитие автоматизированных электроприводов. В современных системах широко применяются бесконтактные силовые и оперативные устройства, не разрывающие электрических цепей, а запи­рающие и отпирающие их. В качестве элементной базы таких устройств используют управляемые вентили ( триоды и тиристоры ), магнитные усилители, бесконтактные сельсины, бесконтактные емкостные и индук­тивные датчики.

Принцип действия большинства из них основан на изменение включа­емого в цепь электрического тока сопротивления, значение которого при опредиленных условиях может изменяться практически от нуля ( открытое состояние ) до бесконечности ( закрытое состояние ).

Механизм работы управляемого вентеля в п. 14 на примере тиристо­ра с выходным параметром в виде изменяющегося напряжения, подводи­мого к двигателю и имеющегося в крайних условиях открытое и закры­тое состояние.

Бесконтактные аппараты управления долговечны из - за отсутствия механических контактов, обладают высоким быстродействием, нечустви­тельны к изменениям характеристик окружающей среды, имеют низки массогабаритные показатели и эксплутационные затраты.

Бесконтактные устройства являются наиболее совершенными аппара­тами для построения функциональной части схем автоматического уп­равления электроприводами. При разработке создании сложных схем уп­равления электроприводов, таких как приводы основных механизмов шлюзов и судов технического флота, бесконтактные устройства предус­матривают в качестве контактных коммутационных аппаратов, способных выполнять отдельные операции в определенной ( логической ) последо­вательности. Поэтому их называют логическими элементами.

Бесконтактные логические элементы, как правило, строятся на транзисторных, диодных и магнитных элементах в виде прямоугольных таблеток с несколькими входами и выходами и схемами, позволяющими реализовать отдельные логические функции.

Выходные сигналы на логические элементы могут подаваться от бес­контактных и контактных датчиков и командоаппаратов.

Схемы на бесконтактных логических элементах могут осуществлять все электрические блокировки и защиты.

Однако следует учитывать, что схемы на бесконтактных логических элементах, имея высокую стоимость, обеспечивают только один заранее заданный алгоритм управления и их невозможно просто переналадить на други алгоритмы. Поэтому наряду со схемами, выполненными на отдель­ных логических элементах в автоматизированных электроприводах, на­чинают находить применение унифицированные логические системы уп­равления. Примерами таких систем являются унифицированная система управления промышленными механизмами ( УМП - 2 ) и унифицированная бесконтактная логическая система управления механизмами шлюзов ( УБЛСУ ). Эти системы представляют собой универсальные устройства, предназначенные для решения логических задач при автоматизации

электроприводов. Они выполняют логические операции по заданному ал­горитму и позволяют сравнительно простыми средствами менять прог­раммы управления.

Для унификации устройств управления двигателями постоянного и переменного тока электромеханической промышленностью разработаны и выпускаются станции управления. Они представляют собой объединенные общей конструкцией комплексные устройства, содержание электрические коммутационные и защитные аппараты, соединенные по требуемой элект­рической схеме и предназначенные для дистанционного автоматического управления электроприводами. Станции управления выполняют в виде блоков и панелей управления.

В блоках аппараты монтируются на раме реечной конструкции или на одной изоляционной плите. Панель управления составляется на общей раме из нескольких блоков.

В станциях по возможности предусматриваются запасные, не неис­пользованные в схеме вспомогательные контакты аппаратов, а иногда и целые аппараты для развития схем, блокировок и сигнализации.

Станция управления для сложных систем электроприводов объединяют в щиты открытого типа в виде панелей или закрытого типа в виде шка­фов. Открытые щиты устанавливают в машинных отделениях или помеще­ниях управления, а шкафы - около производственных механизмов.

Различают станции общепромышленного типа и специализированные. К общепромышленным относят станции, имеющие стандартные схемы управ­ления двигателями постоянного тока, осуществляющие их пуск, ревер­сирование и торможение. Специализированные представляют собой стан­ции управления электроприводами конкретных механизмов различных от­рослей промышленности ( металургической, химической, текстильной и др. ).


Информация о работе «Разработка логической схемы управления двустворчатых ворот судоходного шлюза»
Раздел: Промышленность, производство
Количество знаков с пробелами: 123264
Количество таблиц: 9
Количество изображений: 0

0 комментариев


Наверх