4.1 Описание автоматизированной системы управления процессом бурения Зоя 1.1.
Система Зоя 1.1 предназначена для контроля технологических параметров бурения с целью оперативного управления и оптимизации режимов бурения скважин на нефть и газ и обеспечивает:
· автоматический сбор и обработку с расчетом производных параметров и представление текущей информации в наглядной форме на средствах отображения и регистрации бурильщика и бурового мастера;
· документирование результатов бурения в цифро-аналоговом и графическом виде, включая рапорт за смену,
· контроль выхода технологических параметров за установленные пользователем пределы со световой и звуковой сигнализацией этих событий;
· аварийную сигнализацию при выходе параметров "Вес на крюке", "Давление на входе" за предельные значения с выдачей сигналов блокировки на соответствующее буровое оборудование;
· автономное функционирование пульта бурильщика при отключении ЭВМ;
· высокую эксплуатационную надежность и долговечность при минимальных затратах на техническое обслуживание и метрологическое обеспечение.
К необходимому типовому элементу любой системы автоматического управления относятся датчики технологических параметров. Назначение датчика - преобразование контролируемой или регулируемой величины в величину другого рода, удобную для дальнейшего применения.
В системе присутствуют следующие датчики:
· Датчик веса на крюке устанавливается на неподвижной ветви талевого каната. В качестве первичного преобразователя в датчике используется тензометрический силоизмерительный элемент.
· Датчик контроля момента на роторе (тензометрический) устанавливается на редукторе привода ротора вместо фиксирующей серьги-стяжки или фиксирующей опоры. Контролируется действующее на датчик усилие растяжения или сжатия.
· Датчик контроля ходов насоса (индуктивный датчик приближения) устанавливается на шкиве привода насоса.
· Датчик канала контроля скорости вращения ротора определяет скорость вращения вала привода ротора. В качестве первичного преобразователя применяется датчик приближения. Устанавливается на трансмиссии.
· Датчик давления (тензорезисторный) устанавливается в нагнетательной линии.
· Датчик глубин дает исходную информацию для расчета глубины забоя, подачи, положения тальблока. Датчик цепной передачей связан с валом лебедки.
· Датчик-индикатор изменения расхода бурового раствора на выходе (в желобе) преобразует угол отклонения лопатки от вертикального положения в электрический сигнал в зависимости от уровня и скорости потока.
· В совмещенном датчике плотности - уровня бурового раствора (БР) и плотности БР на выходе в качестве первичного преобразователя применяется дифференциальный манометр. Измеряется гидростатическое давление в погруженных в буровой раствор трубках, через которые под давлением продувается воздух.
· Датчик суммарного содержания горючих газов, выполненный на основе первичного термохимического преобразователя, монтируется вместе с датчиком-индикатором изменения расхода на выходе. Аналогичные датчики применяются для контроля газосодержания и сигнализации во взрывоопасной зоне.
· Датчик температуры БР на входе и выходе выполнен на основе специальной микросхемы и устанавливается, соответственно, в рабочей емкости и в желобе.
· Датчик температуры воздуха (аналогичный) размещен в кабельной распределительной коробке.
· Датчик момента на ключе (тензометрический) устанавливается на приводном тросе ключа.
· Датчик момента на турбобуре (тензометрический) устанавливается на узел стопора ротора.
Информация от датчиков по кабелям передается в блок УКП, где осуществляется преобразование и обработка сигналов, и, затем, в пуль бурильщика и ЭВМ.
Информационно-метрологические характеристики в полном объеме приведены в прилагаемой таблице №.
Таблица №.
Контролируемый параметр | ||
Наименование параметра, единица измерения | Диапазон контроля | |
1 Вес на крюке, кН | 0 - 5000; 0 - 4000 0 - 3000; 0 - 2500 0 - 2000; 0-1500 | |
2 Нагрузка на долото, кН | 0-500 | |
3. Крутящий момент на роторе, кНм | 0-60 0-30 | |
4. Давление на входе, Мпа | 0-40 | |
5 Расход на входе, л/с | 0-100 | |
6 Обороты ротора, об/мин | 0-300 | |
7 Число ходов каждого насоса (до трех), ход/мин | 0-125 | |
8 Изменение расхода на выходе, % | 0-99 | |
9. Подача, м | 0-99,9 | |
10. Положение талевого блока, м | 0-60 0-45 | |
11 Глубина забоя, м | 0 -9999 | |
12 Положение долота над забоем, м | 0 - 9999 | |
13 Текущее время, дата | - | |
14. Время бурения 1 м проходки, мин/м | 0-1000 | |
15. Механическая скорость проходки, м/час | 0-200 | |
16. Скорость СПО, м/с | 0-3 | |
17. Время бурения долотом, мин | 0-999999 | |
18. Проходка на долото, м | 0-999 | |
19. Плотность бурового раствора (БР),г/смЗ | 0,8-2,6 | |
20. Уровень БР, м | 0,4-2,0; 0,8-2,4 1,2-2,8 | |
21 Суммарный объем БР,мЗ | 0 - 999,9 | |
22. Изменение суммарного объема БР, мЗ | 0-500 | |
23 Суммарное содержание горючих газов, % НКПР | 0-50 | |
24. Момент на ключе, кНм | 0-60 | |
25. Момент турбобура, кНм | 0-30 | |
26 Температура на входе и выходе,°С | 0-100 | |
27 Температура воздуха,°С | 0-100 | |
28. Плотность промывочной жидкости в желобе, г/смЗ | 0,8-2,6 |
4.2 Место УСО в АСУ процесса бурения
АСУ ТП должна иметь возможность и средства связи с объектом управления. Однако из главных различий между системами обработки данных и АСУ ТП состоит в том, что последняя должна быть способна в реальном времени получать информацию о состоянии объекта управления, реагировать на эту информацию и осуществлять автоматическое управление ходом технологического процесса. Для решения этих задач ЭВМ, на базе которой строится АСУ ТП, должна относиться к классу управляющих вычислительных машин (УВС), т. е. представлять собой управляющий вычислительный комплекс (УВК) УВК можно определить как вычислительную машину, ориентированную на автоматический прием и обработку информации, поступающей в процессе управления, и выдачу управляющих воздействий непосредственно на исполнительные органы технологического оборудования. Такая ориентация обеспечивается устройствами связи с объектом (УСО) (рис. ммм) - набором специализированных блоков для информационного обмена между управляющей ЭВМ и объектом управления. Различают пассивные и активные УСО.
Пассивные устройства выполняют команды опроса датчиков и команды выдачи управляющих воздействий. Они содержат комплекты входных и выходных блоков и блок управления. В состав входных и выходных блоков, обеспечивающих прием аналоговой и дискретной информации, входят преобразователи формы информации типа аналог-код и код-аналог, коммутаторы, усилители и т. п. Блок управления обеспечивает необходимый обмен информацией с управляющей ЭВМ и управление всеми блоками устройства, расшифровывает команды, поступающие от ЭВМ, и обеспечивает необходимый обмен информацией через блоки ввода-вывода
Активные УСО способны работать в автономном режиме слежения за состоянием управляемого объекта (процесса), а также выполняют определенные алгоритмы преобразования информации, например, алгоритмы регистрации параметров и сигнализации об отклонении их от нормы, регулирования по одному из относительно простых законов и др. Построение УСО по активному принципу позволяет повысить надежность АСУ ТП в целом и эффективность использования управляющей вычислительной машины в результате сокращения потока информации, поступающей от объекта управления в управляющую ЭВМ.
Рис. Типовая структура АСУ ТП на базе управляющей ЭВМ.
В настоящем дипломе разрабатывается конструкция функционально законченного устройства связи с объектом в системе сбора и первичной обработки информации о состоянии процесса бурения (рис.ццц). Система сбора и первичной обработки информации о состоянии процесса бурения является важнейшей функциональной подсистемой АСУ ТП ЗОЯ.
В основном схема разработана на интегральных микросхемах ТТЛ серии К555 и К155. Данная модель является практичной, недорогой и простой и позволяет связать датчик любого типа с IBM PC или эквивалентным компьютером. Подробно рассматриваются принципы функционирования системной шины IBM PC и базовый аппаратный интерфейс, с которым связана вышеуказанная конструкция, а также работа системы прерываний, счетчиков и таймеров.
... диагностика бурового станка, регистрация и индикация параметров режимов бурения и некоторых режимов работы. Оптимизацию процесса бурения намечено осуществить путем адаптивного регулирования с помощью вычислительных устройств. В обзоре, посвященном анализу состояния разведочного бурения и направления его развития, зарубежные специалисты утверждают, что дальнейшее развитие этого способа, вероятно, ...
... работы. Кроме того, за счет повышения скоростей бурения возможно сокращение количества буровых установок, а следовательно, и численности рабочих. Снижение себестоимости 1 м бурения скважины - следующий источник эффективности систем автоматизированного управления процессом бурения. Это достигается с одной стороны, за счет роста производительности труда, а с другой - за счет меньших удельных ...
... период времени. Ручное управление даже двумя-тремя параметрами процесса бурения на оптимальном уровне в условиях частоперемежающихся пород и глубокой скважины вряд ли возможно. Автоматизированное управление процессом бурения позволяет успешно изменять практически одновременно два-три параметра с недоступной человеку частотой. Следовательно, источником эффективности автоматизированного управления ...
... К ним относятся: измерение механической скорости бурения, веса на крюке, расхода промывочной жидкости и давления на стояке, газовый и люминесцентный и др. каротаж. Данные геофизических исследований, полученные в процессе бурения могут служить в большинстве скважин надежным критерием интерпретации результатов с целью дальнейшего планирования работ на скважине (опробования объектов, отбора керна и ...
0 комментариев