2.   Расчет клиноременной передачи.

 

Выбираем сечение клинового ремня, предварительно определив угловую скорость и номинальный вращающий момент ведущего вала:

При таком значении вращающего момента принимаем сечение ремня типа А, минимальный диаметр . Принимаем.

Определяем передаточное отношение i без учета скольжения

.

Находим диаметр  ведомого шкива, приняв относительное скольжение ε = 0,02:

.

Ближайшее стандартное значение . Уточняем передаточное отношение i с учетом ε:

.

Пересчитываем:

.

Расхождение с заданным составляет 1,9%, что не превышает допустимого значения 3%.

Определяем межосевое расстояние а: его выбираем в интервале

принимаем близкое к среднему значение а = 400 мм.

Расчетная длина ремня:

.

Ближайшее стандартное значение L = 1250 мм, .

Вычисляем

и определяем новое значение а с учетом стандартной длины L:

Угол обхвата меньшего шкива

Скорость

По таблице определяем величину окружного усилия , передаваемого клиновым ремнем:  на один ремень.

.

Коэффициент, учитывающий влияние длины ремня:

.

Коэффициент режима работы при заданных условиях , тогда допускаемое окружное усилие на один ремень:

.

Определяем окружное усилие:

.

Расчетное число ремней:

.

Определяем усилия в ременной передаче, приняв напряжение от предварительного натяжения

Предварительное натяжение каждой ветви ремня:

;

рабочее натяжение ведущей ветви

;

рабочее натяжение ведомой ветви

;

усилие на валы

.

Шкивы изготавливать из чугуна СЧ 15-32, шероховатость рабочих поверхностей .

3.   Расчет двухступенчатого цилиндрического редуктора.

 

Для обеих ступеней принимаем:

Колесо: материал – сталь 40Х, термообработка – улучшение; .

Шестерня: материал – сталь 40Х, термообработка – улучшение; .

Передача реверсивная.

Для расчета принимаем: , .

Коэффициент долговечности при длительной эксплуатации принимаем ; коэффициент запаса прочности ; .

Рассчитаем допускаемые контактные напряжения:

, .

Рассчитаем допускаемые напряжения изгиба:

, .

Коэффициент на форму зуба ; коэффициент нагрузки ; коэффициент ширины венцов ; коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении; коэффициент, учитывающий распределение нагрузки между зубьями

Расчет третьей (тихоходной) ступени.

Межосевое расстояние:

,

принимаем значение из стандартного ряда: а = 140 мм.

Нормальный модуль:

,

принимаем среднее значение, соответствующее стандартному: m = 2 мм.

Принимаем предварительно угол наклона зубьев β = 15˚ и определяем числа зубьев шестерни и колеса:

Уточняем значение угла β:

.

Основные размеры шестерни и колеса:

диаметры делительные:

;

,

проверка: .

Диаметры вершин зубьев:

;

,

диаметры впадин:

;

.

Ширина колеса:

.

Ширина шестерни:

.

Окружная скорость колеса тихоходной ступени:

.

При данной скорости назначаем 9-ю степень точности.

Коэффициент нагрузки для проверки контактных напряжений:

.

Проверяем контактные напряжения:

,

;

.

Проверяем изгибные напряжения:

,

.

.

Силы, действующие в зацеплении тихоходной ступени:

окружная:

Определим тип используемых подшипников:

;

следовательно, будем использовать радиально-упорные шарикоподшипники.

Расчет второй (быстроходной) ступени.

Межосевое расстояние равно 140 мм из условия соосности, значения всех коэффициентов, используемых в расчете третьей ступени справедливы при расчете данной ступени.

Принимаем угол наклона зубьев β = 12˚50΄19˝, а модуль m = 1,5 мм и определяем числа зубьев шестерни и колеса:

Основные размеры шестерни и колеса:

диаметры делительные:

;

,

проверка: .

Диаметры вершин зубьев:

;

,

диаметры впадин:

;

.

Ширина колеса:

.

Ширина шестерни:

.

Окружная скорость колеса быстроходной ступени:

.

При данной скорости назначаем 9-ю степень точности.

Коэффициент нагрузки для проверки контактных напряжений:

.

Проверяем контактные напряжения:

,

;

.

Проверяем изгибные напряжения:

,

.

.

Силы, действующие в зацеплении быстроходной ступени:

окружная:

Определим тип используемых подшипников:

;

следовательно, будем использовать радиально-упорные шарикоподшипники.


Информация о работе «Курсовой проект по деталям машин»
Раздел: Технология
Количество знаков с пробелами: 8821
Количество таблиц: 6
Количество изображений: 23

Похожие работы

Скачать
27383
0
47

... для выполнения дипломного проектирования. Вместе с тем работа над курсовым проектом по деталям машин подготавливает к решению более сложных задач общетехнического характера, с которыми будущий инженер встретится в своей практической деятельности по окончании университета. 1. КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДА редуктор расчет конструирование Выбор электродвигателя. Частота вращения выходного вала ...

Скачать
12867
0
3

... прочности, равный [S]=[S1][S2][S3], (17) где [S1] – коэффициент, учитывающий точность определения действующих на деталь нагрузок; [S2] – коэффициент, учитывающий однородность материала детали; [S3] – коэффициент, учитывающий требования безопасности. В соответствии с рекомендациями [1] эти коэффициенты выбраны равными 1.2;1.5 и 1 соответственно. Подставляя эти значения ...

Скачать
16503
0
0

... на контактную прочность активных поверхностей зубьев ,  циклов. Эквивалентное число циклов перемены напряжений при расчете зубьев на выносливость при изгибе ,  циклов.   Определение допускаемых напряжений Зубчатые колеса изготовлены из стали 20Х. Механические характеристики сердцевины  МПа,  МПа. Твердость зубьев колеса , шестерни - . Контактные: , МПа, ,  МПа. Базовое число циклов   ...

Скачать
48035
0
11

... на 5 - 10 мм меньше длины ступицы колеса Lст, Lшп = L ст - (5 - 10). Длину ступицы принимают [5, ñ.30] в зависимости от диаметра d вала под ступицей: для цилиндрической передачи Lст = (1-1,5) · d; для конической передачи Lст = (1-1,2) · d. Длина шпонки Lшп’ = Lст - (5 - 10) = 75 – 12 = 63 . Выбираем Lшп = 63. Шпонка 20 х 12 х 63 по ГОСТ 23360 – 78. Напряжение смятия узких граней шпонки не ...

0 комментариев


Наверх