2. Виртуальные эксперименты в преподавании химии
Во многих исследованиях отмечается значение виртуальных экспериментов для химического образования и подчеркиваются преимущества их использования. Например, в (Dalgarno B., 2003) указывается, что виртуальные опыты могут применяться для ознакомления учащихся с техникой выполнения экспериментов, химической посудой и оборудованием перед непосредственной работой в лаборатории. Это позволяет учащимся лучше подготовиться к проведению этих или подобных опытов в реальной химической лаборатории. Необходимо особо отметить, что виртуальные химические эксперименты безопасны даже для неподготовленных пользователей. Учащиеся могут также проводить такие опыты, выполнение которых в реальной лаборатории может быть опасно или дорого. В (Dalgarno B., 2003) указывается, что проведение виртуальных экспериментов могло бы помочь учащимся освоить навыки записи наблюдений, составления отчетов и интерпретации данных в лабораторном журнале. В (Carnevale D., 2003) отмечается, что компьютерные модели химической лаборатории побуждают учащихся экспериментировать и получать удовлетворение от собственных открытий.
При создании виртуальных лабораторий могут использоваться различные подходы. Прежде всего, виртуальные лаборатории разделяются по методам доставки образовательного контента. Программные продукты могут поставляться на компакт-дисках (CD-ROM) или размешаться на сайте в сети Интернет. По способу визуализации различают лаборатории, в которых используется двухмерная, трехмерная графика и анимация. Кроме того, в (Robinson J., 2003) виртуальные лаборатории делятся на две категории в зависимости от способа представления знаний о предметной области. Указывается, что виртуальные лаборатории, в которых представление знаний о предметной области основано на отдельных фактах, ограничены набором заранее запрограммированных экспериментов. Этот подход используется при разработке большинства современных виртуальных лабораторий. Другой подход позволяет учащимся проводить любые эксперименты, не ограничиваясь заранее подготовленным набором результатов. Это достигается с помощью использования математических моделей, позволяющих определить результат любого эксперимента и соответствующее визуальное представление. К сожалению, подобные модели пока возможны для ограниченного набора опытов.
Эти подходы к созданию виртуальных лабораторий в разной степени использованы в известных зарубежных разработках. Например, образовательная среда Virtual Chemistry Laboratory, разработанная в Carnegie Mellon University (США), доступна через Интернет, но может распространяться и на компакт-дисках. Визуально она представляется в виде двумерных графических сцен, а ход химических экспериментов основан на математической модели (Yaron D. et al., 2001). Продукт Virtual Chemical Lab из Brigham Young University (США) поставляется на CD-ROM, использует трехмерную графику, а ход экспериментов в нем основан на наборе заранее запрограммированных фактов (Brian F., 2003). В доступной через Интернет Virtual Chemistry Laboratory из Oxford University (Великобритания) для демонстрации проводимых опытов используется большой набор видеофрагментов (Virtual chemistry - http://www.chem.ox.ac.uk/vrchemistry/).
Необходимо отметить, что возможности моделирования в образовательных мультимедиа продуктах во многом зависят от способа доставки образовательного контента. Очевидно, что для доставки через Интернет с его узкими информационными каналами лучше подходит двумерная графика. В то же время в электронных изданиях, поставляемых на CD-ROM, не требуется экономии трафика и ресурсов, и поэтому могут быть использованы трехмерная графика и анимация. Важно понимать, что именно объемные ресурсы - трехмерная анимация и видео - обеспечивают наиболее высокое качество и реалистичность визуальной информации. Однако объемы трехмерной анимации могут быть настолько велики, что даже возможности CD-ROM будут недостаточны для их хранения. Альтернативу объемным файлам анимации и видео, в которых используются последовательность готовых изображений, составляет более компактное представление трехмерных объектов. Синтезированная по этим моделям в реальном времени анимация также предоставляет большие возможности для создания трехмерной образовательной среды, моделирующей реальную лабораторию. Благодаря разумному сочетанию заранее подготовленной анимации и анимации, синтезированной в реальном времени трехмерных моделей, в условиях экономии ресурсов обеспечивается возможность реалистичного представления, как визуального окружения, так и действий учащегося во время проведения экспериментов. Такой подход и был выбран при разработке описанной в этой статье виртуальной химической лаборатории. Химическое оборудование, экспериментальные установки и визуализация сложных химических процессов представляются заранее подготовленными анимациями. В то же время, синтезированные в реальном времени трехмерные модели используются для моделирования химической посуды, жидких и твердых реактивов, действий учащихся в реальной лаборатории (школьники могут приливать из одного сосуда в другой, помещать реактивы в пробирки и доставать склянки с растворами с полок).
... проектов в обучении химии; · использование цифровых лабораторий как современного информационного оборудования в проведении химического эксперимента, в частности использование цифровой лаборатории «Архимед» [20]. Дистанционное и открытое образование. В основе концепции открытого образования лежит творческий характер обучения. Такая форма образовательного процесса включает ученика в ...
... современным компьютерам, должна стать мощным усилителем мыслительных процессов в образовании. И здесь особая роль отводится преподавателям, которые являются носителями технологии образования и которые должны творчески переосмыслить накопленный интеллектуальный багаж в соответствии с новыми технологическими возможностями. До настоящего времени в российском обществе отсутствует четкое понимание ...
... программного комплекса ведется на основании задания на дипломную работу, утвержденное приказом ректора Донбасской машиностроительной академии по ГОСТ 19.101-77. Тема дипломной работы – «Программно – методический комплекс для мультимедийного представления учебной информации». Спецчасть разработки – «Разработка программного обеспечения для интерфейса оболочки комплекса и примера информационного ...
... технологий единой системы дистанционного образования в России; -участие России в международных программах, связанных с внедрением современных информационных технологий в образование. 2. Компьютеризация школьного образования Компьютеризация школьного образования относится к числу крупномасштабных инноваций, пришедших в российскую школу в последние десятилетия. В настоящее время принято ...
0 комментариев