F — сила, действующая на сорвавшегося. Не более 1200 кг для динамической веревки

90961
знак
17
таблиц
30
изображений

1.   F — сила, действующая на сорвавшегося. Не более 1200 кг для динамической веревки.

2.   N=F1+F — сила, действующая на точку страховки. Веревка проходит через карабин, поворачиваясь в противоположном направлении. F < N < 1.66F. Величина силы N — до 1800 кг.

3.   F1 — сила, воздействующая на всю последующую страховочную цепь. При этом часть ее — это сила трения в остальных карабинах, трение веревки о выступы, скалы и т. п., трение в тормозном устройстве, через которое осуществляется страховка, трение о руки страхующего. Остальная часть силы F1, это сила упругости в веревке. Она равна и противоположна силе, с которой веревка зажата и удерживается на страховочной базе — Fбазы. 0 < F1 < 0.66F. Величина силы F1 — до 600 кг.

4.   Fбазы — рывок на страховочной базе. Воспринимается или непосредственно страхующим или самой базой. 0 < Fбазы < F1. Величина силы Fбазы от 0 до 600 кг. При зависании на базе без промежуточных точек рывок на базу будет в пределах 1200—1800 кг в зависимости от способа страховки.

Нагрузки в веревке
На веревку может воздействовать статическое или динамическое воздействие.

Статическое воздействие — воздействие постоянной силы (например — груз, подвешенный за веревку). При этом веревка растягивается и в ней возникает сила упругости, равная и направленная противоположно приложенной силе. При слабых воздействиях выполняется закон Гука — при этом сила упругости пропорциональна величине деформации веревки (область 1). F=α·(L/Lo).

график статического воздействия на верёвкуКоэффициент пропорциональности α называют коэффициент жесткости веревки. При некоторых усилиях зависимость силы от деформации становится нелинейной (область 2). Наконец при увеличении силы наступает такое значение Fmax (которому соответствует Lmax, когда наступает разрыв веревки.

Область пропорциональной зависимости силы от деформации характерна тем, что при снятии внешней нагрузки веревка возвращается в точно такое же состояние, в котором она находилась до нагрузки и ее свойства не меняются (т.е. не меняется ее прочность, эластичные свойства и прочее). Веревка может многократно использоваться в таком режиме.

Нагрузки, при которых зависимость силы от удлинения становятся нелинейными, деформируют веревку таким образом, что при их снятии она не возвращается в исходное состояние, при этом в ней возникают необратимые изменения и ее свойства меняются (всегда в худшую сторону). Ее жесткость при этом увеличивается, ухудшаются эластичные свойства. Эксплуатация веревки при таких условиях приводят к преждевременному износу.

Критерием качества динамической веревки является тест UIAA. Современные динамические веревки могут выдерживать 8—20 подобных рывков. Можно сказать, что для таких веревок подобный рывок находится в области пропорциональной зависимости силы от удлинения (конечно, в пределах того количества таких рывков, которое указано фирмой-изготовителем).

Динамическое воздействие — воздействие силы, меняющейся во времени, или воздействие движущегося предмета (груза). Например — человек, падающий под действием силы тяжести. При этом он движется с ускорением g=9.8 м/сек2 и скорость его увеличивается пропорционально времени падения. Когда говорят что, зависая на веревке человек, испытывает на себе рывок, это означает, что вся кинетическая энергия человека переходит в энергию деформации веревки и на человека действует сила упругости со стороны веревки.

В приложении сделан расчет величины рывка, получено следующее выражение:

формулаформула

график силы упругостиВеличина рывка — максимальное значение силы упругости. Сила упругости при срыве меняется по косинусоиде (это видно из приведенного ниже уравнения, которое также получено в приложении).

Сейчас же мы проанализируем эти формулы.

При хождении в горах никто, конечно, не вычисляет, какой рывок произойдет при срыве человека. Но для правильной оценки ситуации нужно качественно ориентироваться в ситуации и представлять от чего может зависеть величина этого рывка, когда она больше и когда меньше.

 

Статическая страховка без учета трения Рассмотрим случай, при котором мы осуществляем статическую страховку и не учитываем трение в верхнем карабине (как если бы мы надели на карабин ролик).

формула, где K=(H+L)/Lo — фактор рывка.

график зависимости силы рывка от&nbsp;величины фактора рывкаПри этом из формулы видно, что величина рывка зависит только от свойств веревки α — коэффициент жесткости веревки, от веса человека P и фактора рывка К. От того, на сколько метров человек вышел над точкой страховки, сколько точек сделал, от длины веревки и прочего рывок не зависит. Фактор рывка — это отношение глубины падения к общей длине выданной веревки. При этом сами значения глубины падения или длины веревки не влияют на рывок (то есть если глубина падения и длина веревки равны 3 метрам или они равны 30 метрам — рывок будет одинаковым). Ничего удивительного в этом нет. Действительно, при большей глубине падения в гашении рывка участвует большее количество веревки, при этом рывок оказывается одинаковым.

Величина рывка пропорциональна величинам корень из Pкорень из Ккорень из &#945;. Например, если фактор рывка увеличился в 2 раза, то рывок увеличился в 1.4 раза (квадратный корень из 2).

Анологично — с весом.

Минимальное значение рывка в 2 раза превышает вес ( т.е. 160 кг при весе человека 80 кг). Возникает в том случае, когда просто нагружается веревка и при этом отсутствует свободная веревка. При этом К=0 — нет свободного падения вообще, веревка начинает нагружаться сразу.

Максимальное значение фактора рывка в обычно равен К=2. Такой рывок соответствует случаю, когда первый в связке не сделал ни одной точки. При этом он падает до страхующего и еще столько же вниз.
К>2 могут возникнуть только в том случае, если страхующий после срыва первого успеет выбрать веревку. По этой причине (а также из соображений возможности потерять страховку) выбирать веревку после срыва ведущего категорически запрещается.

график зависимостиВлияние трения в верхней точке на величину рывка Рассмотрим влияние трения о карабин верхней точки, на которой происходит зависание сорвавшегося. Здесь f — коэффициент трения веревки в карабине. При очень большом трении (например, веревка застряла в карабине) ситуация эквивалентна случаю, когда рывок с фактором К=2 приходится на верхний карабин. Действительно, при этом f=1; (Lo-L1)/Lo=H/Lo=K/2; имея это в виду, выражение в скобках, указанное ниже, в которое входит f, обращается в величину K/2. Это эквивалентно ситуации, когда К=2 и нет трения.

формулаДанное выражение в уравнении отвечает за влияние сил трения в верхней точке на величину рывка. Проанализируем его. Выражение L1/Lo может принимать значения от 0 до 1. В обычной ситуации L1/Lo=(1-К/2).

Графики зависимости F(f) и F(L1/Lo) — практически линейные. (Линейность графиков означает, что во сколько раз увеличилось трение или отношение L1/Lo, во столько раз и возрастет величина рывка). Графики приведены ниже. Имеется особенность, когда f и L1/Lo близки к 1.

Это видно на графиках. При этом величина рывка резко возрастает. Это соответствует ситуации, если при падении первого в связке резко выбрать всю веревку и трение через карабин будет высокое. При этом нагрузка придется на верхнюю точку, а на амортизацию рывка веревки, при этом, не окажется.

Графики приведены для веса 80 кг и веревке, которая при стандартном рывке UIAA имеет значение рывка 1200 кг. Такая ситуация на самом деле может присутствовать на практике и это надо иметь в виду. Например, если при одновременном движении связки происходит срыв нижнего, он может сорвать верхнего.

При одновременном падении их веревка будет двигаться в верхнем карабине. При этом первого в связке как бы затягивает в верхнюю точку и когда веревка начнет гасить его энергию падения, ее почти не останется для этой цели, рывок будет очень жестким. При таком рывке фактор рывка может оказаться гораздо выше, чем 2.

график зависимостиВлияние протравливания веревки на величину рывка Рассмотрим влияние протравливания веревки. При этом будем различать собственно протравливание, которое входит в понятие динамической страховки, и трение, которое возникает при движении веревки между базой и верхним карабином за счет продвижения веревки через карабины и за счет трения о неровности рельефа.

В уравнение величины рывка входит следующее выражение: формула

При этом участвуют две относительные величины — отношение усилия протравливания к весу человека и отношение длины протравливания к длине веревки. Как можно учитывать протравливание реально во время страховки?

Для этого выясним — как погасить рывок только протравливанием?

Усилие протравливания Если усилие протравливания равно весу человека, в этом случае длина протравливания будет равна глубине падения человека. Если усилие протравливания больше веса человека в N раз, значит длина протравливания будет в N раз меньше, чем глубина падения. При гашении рывка только за счет протравливания сила рывка на веревку будет постоянной в течение всего периода протравливания. Этим данный прием является очень удобным и универсальным. Используя этот прием можно ходить на любой веревке (в том числе и не имеющей сертификат UIAA, даже на пеньковой веревке). Его недостаток — в сложности исполнения. Трение веревки о промежуточные карабины и о рельеф
Этот фактор можно установить только приблизительно. Чем первому труднее выбирать веревку, тем больше такое трение. Чем больше перегибов делает веревка в карабинах, тем трение также больше. При работе в связках стараются это трение уменьшить, так как оно мешает передвижению. При этом используют оттяжки, двойную веревку и ряд других приемов. При большой величине трения рывок на верхний крюк может оказаться очень жестким (в худшем случае будет жесткий рывок с фактором рывка К=2). Итак, трение веревки действует как тормозное устройство с некоторой силой протравливания.

Динамическая страховка
Динамическая страховка — довольно сложный технический прием, который позволяет при срыве партнера уменьшить рывок на веревку и на все остальные звенья страховочной цепи и обезопасить последствия падения. При этом страхующий зажимает веревку не жестко, а так, чтобы она при рывке протравилась на некоторую длину. Можно контролировать либо усилие, с которым страхующий зажимает веревку, либо длину протравливания.

Проще контролировать усилие протравливания. Длина протравливания будет такая, которая соответствует данному усилию. Так как в реальных условиях присутствуют трение веревки о карабины и о рельеф, они действуют действовать одновременно с действиями страхующего. Надо оценить насколько критично падение партнера на большую глубину падения (нет ли там полочек, выступов, о которые ваш партнер может удариться), а также длину свободной веревки. Если условия позволяют — постараться протравить веревку на достаточное расстояние. В первый момент рывка не следует зажимать веревку сильно (вдруг трение о промежуточные карабины и выступы будет велико). Затем надо плавно увеличить усилие на вашем тормозном устройстве. Если длина протравливания получается слишком большой — нужно увеличить силу. Если вы все делаете правильно, рывок будет почти незаметен для партнера и вы снизите риск вырыва верхней точки страховки. Во время страховки рекомендуется пользоваться тормозным устройством. Распространенными тормозными устройствами являются «восьмерка», «букашка» и «шайба Штихта».

На базе
На базе страхующий делает страховку первому в связке. База должна выдержать рывок как вниз (если ни одной точки сделать первому не удастся или они все повылетают), так и вверх. Рывок за базу может быть как очень жестким, так и слабым. Важно, чтобы на базу не пришелся сильный рывок. Это может привести к вырыву отдельных точек страховки и даже к разрушению самой базы (и тогда все участники связки, скорее всего, погибнут, чего, естественно, нельзя допускать).
Для базы делают обычно 2 точки страховки или более. Затем их блокируют между собой.

На последней промежуточной точке
На верхней промежуточной точке страховки происходит задержание сорвавшегося. Этот процесс мы уже рассматривали выше. Если бы трения в карабине не было, то на верхнюю точку действовала бы сила, в 2 раза превышающая рывок на веревку. За счет силы трения на карабин будет воздействовать сила N=F1+F=1.66F. При наличии грязи, влаги, дефектов веревки или карабина сила трения может увеличиться, так что реальная нагрузка на карабин (а поэтому и на точку страховки) составляет: F < N < 1.66F. Примерно можно считать, что нагрузка за верхнюю точку в полтора раза больше рывка в веревке. Если точка вылетела, то аналогичный процесс будет происходить на следующей точке. При этом часть энергии может погаситься, а может и не погаситься (смотря как была вырвана точка страховки). Если не выдержала следующая, падение будет происходить дальше… При прохождении веревки надо делать как минимум 2—3 абсолютно надежные промежуточные точки страховки. Надежную точку страховки надо также делать перед сложным местом, а также после него (потому что на самом сложном месте хорошую точку страховки можно просто не успеть сделать).

В других промежуточных точках
При срыве вся основная нагрузка приходится на верхнюю (последнюю) точку страховки. В это время на другие промежуточные точки действует небольшой рывок в направлении, перпендикулярном склону. При страховке за анкера или крючья этот момент даже можно не рассматривать, чего не скажешь для случая, когда применяют закладки. Закладки характерны тем, что они могут держать рывок только в вполне определенном направлении, которое, обычно, совпадает с направлением возможного срыва. В поперечном же направлении закладки часто не работают. Более того, часть закладок может просто вылететь при вытаскивании веревки вверх при движении первого. А это означает, что при вырыве верхней точки падать придется далеко… Как можно обезопасить данную ситуацию?

Подбить закладку молотком (непопулярная мера, портит саму закладку, ее после этого, как правило, трудно вытащить, но зато очень эффективная). Использовать только в крайнем случае. Сильно дернуть за закладку после того, как она уже установлена (этим она заклинивается в трещине и не выскакивает при боковых нагрузках). Самый распространенный прием. Повесить на закладку дополнительную оттяжку или карабин. В комбинации с вышеназванным широко применяется, но приводит к дополнительному расходу снаряжения. Поставить еще одну закладку, которая действует в противоположном направлении. Эти точки блокируют и используют вместе. При этом повышается надежность. Недостатки — дополнительный расход снаряжения и времени на установку точки.

Воздействие на сорвавшегося
На сорвавшегося действует тот же рывок, который возникает в веревке. Некоторую амортизацию обеспечивает подвесная система и костно-мышечная система (это существенно, когда глубина падения невелика). Кроме фактора рывка существенным является то, не ударится ли упавший человек о выступы до того, как будет задержан веревкой. Большое значение имеет качество подвесной системы. Для скалолазания в последнее время используют нижнюю подвесную систему — беседку. Она делается таким образом, чтобы равномерно распределять нагрузку. При этом большая часть нагрузки распределяют на верхнюю часть бедер. По нормативам UIAA система должна выдерживать рывок не менее 1500 кг (при этом на каждую ногу приходится 750 кг). Считается, что кратковременное воздействие рывка 1200 кг не причиняет существенного вреда для человека (отсюда и норматив UIAA на веревку — не более 1200 кг) Для альпинизма применяют в основном комбинированные системы из беседки и обвязки. Это связано с тем, что падение альпиниста может происходить в более сложных условиях и с большими факторами рывка. Если падение альпиниста не вовремя стабилизируется, рывок может произойти в направлении, перпендикулярном телу (если он будет только в беседке). При этом возможны травмы позвоночника, вплоть до его перелома. Кроме того, альпинист может нести с собой рюкзак. В этом случае воздействие на позвоночник может стать еще более непредсказуемым. Применение обвязки стабилизирует падение тела. Точка приложения рывка находится при этом гораздо дальше от центра тяжести и риск получить травму позвоночника гораздо ниже. Но при этом возникает новая опасность — получить травмы (переломы) ребер. Поэтому обвязка должна быть тщательно отрегулирована. При срыве нагрузка должна приходиться частично на обвязку, но в основном на беседку.

Еще раз подчеркнем, что первый должен ввязываться в веревку с помощью узла, а не пристегиваться карабином.

Альпинистская веревка

Как выбрать альпинистскую веревку? Каким критериям она должна удовлетворять?

Выбор
Веревка в целом подразделяется на динамическую, статическую и вспомогательную. Динамические веревки применяют для страховки на маршруте при хождении с нижней страховкой. Статическая применяется для перил, при спасработах и в промышленном альпинизме. Вспомогательная веревка применяется для различных других целей, где возможные нагрузки значительно ниже по своей величине, чем в перечисленных выше случаях.
Подробнее остановимся на динамических веревках. В настоящее время применяют одинарную веревку, полуверевки (ее еще называют двойной веревкой) и двойную веревку (иначе — цвилинговая).

одинарная веревка

Одинарная веревка — больше всего подходит для спортивных восхождений и восхождений по несложным «традиционным» маршрутам (где маршрут и работа с веревкой не очень сложные).

полуверевка

Полуверевка — больше всего подходит для более сложной работы с веревкой, либо когда за счет меньшей силы рывка на разделенные веревки увеличивается безопасность при срыве, либо в случае необходимости организовывать спуск дюльфером.

двойная веревка

Двойная веревка — будет лучше всего для горных маршрутов (она намного легче двух полуверевок).

Как выбрать веревку при ее покупке — вопрос не очень простой. Всегда, когда выбор достаточно широк, сделать его сложно. Легче работать с одинарной веревкой. Как правило, ею пользуются более часто, чем другими типами веревок. Она же универсальнее и немного дешевле, чем цвилинговая или 2 полуверевки. На взгляд автора одинарная веревка более устойчива с точки зрения подверженности механическим повреждениям. Однако преимущества в использовании двойных веревок достаточно существенны и выбор, чаще всего, основывается на личных пристрастиях и привычках. С точки зрения безопасности в использовании разных типов веревок — можно считать, что они одинаково безопасны.

Свойства и технические характеристики современных веревок
Для веревок разработаны требования UIAA и европейские требования. Если веревка удовлетворяет им, то ее применение в альпинизме возможно. Веревка бывает динамическая и статическая. Динамическая веревка применяется для страховки первого на маршруте (для нижней страховки). Статическая веревка не применяется для нижней страховки и используется для организации перил, в спасработах или промышленном альпинизме. На статическую веревку также есть европейские нормы. Основное отличие их от динамических — статическая веревка на должна сильно растягиваться (не более 5% при грузе 150 кг).

Требования UIAA и EN892 для динамической веревки

Сила рывка должна быть не более 12 kN при факторе рывка 2 с весом 80 кг. (55 кг для полуверевки или двойной веревки). Веревка должна выдерживать не менее 5 рывков с фактором рывка 2 и весом, указанным выше. Удлинение под грузом — не должно быть более 8% под грузом 80 кг (для полуверевки — удлинение не более 10% под грузом 80 кг). Гибкость при завязывании узлов — проверяется измерением диаметра веревки внутри узла при нагрузке 10 кг. Смещение оплетки веревки относительно сердцевины — 2 м. веревки протягивают через специальное устройство 5 раз. Смещение оплетки веревки должна быть меньше 40 мм.
Маркировка должна указывать тип веревки (одинарная, полуверевка или двойная), изготовителя и CE-сертификат.

Требования prEN 1891 для статических веревок

Сила рывка должна быть меньше 6 kN при факторе рывка 0.3 и весе 100 кг. Должна выдержать как минимум 5 рывков с фактором падения 1 и весом 100 кг, с узлом «восьмеркой». Удлинение, возникающее от грузов от 50 до 150 кг, не должно превышать 5%. Гибкость при завязывании узлов — как указано выше. Коэффициент гибкости (фактор K=диаметр веревки/диаметр веревки внутри узла) — должен быть не более 1,2. Смещение оплетки веревки относительно сердцевины — 2 м. веревки протягивают через специальное устройство 5 раз. Смещение оплетки веревки должна быть не более 15 мм. Вес оплетки веревки должен быть не больше определенной доли от общей массы веревки. Статическое усилие на разрыв — веревка должна выдерживать не менее 22 kN (для веревок диаметром 10 мм и более) или 18 kN (для 9 мм веревок), с узлом «восьмерка» — 15 kN. Маркировка — на концах веревки указывается тип веревки (A или B), диаметр, изготовитель и EN, которому веревка соответствует. Полоса в центре должна показывать тип веревки (А или В), модель, изготовителя, номер и год изготовления.

Приведем нормы UIAA для другого снаряжения, применяемого в альпинизме:

Анкера, крючья, закладки (anchors): 25 kN Карабины, вдоль продольной оси (carabiner): 20 kN Карабины, вдоль поперечной оси (carabiner): 4 kN Страховочные петли (sling): 22 kN Система (harness): 15 kN Прочность ручки ледоруба 12 kN

Альпинистское снаряжение постоянно меняется по своим качествам. Применяются все более новые, дорогостоящие материалы. Приведем для примера характеристики современных веревок фирмы Beal, которая является одним из лидеров по производству альпинистских веревок. Ниже приведены свойства вспомогательных веревок и стропы, из которой изготавливают оттяжки на карабины и подвесные системы. Все веревки Beal имеют увеличенную долговечность вследствие развития достижений новых технологий.

Характеристики веревок фирмы Beal

диаметр и тип веревки

сила рывка

количество рывков

вес одного метра

вес груза

80 кг

55 кг

80 кг

55 кг

 

Apollo 11 мм 720 DaN - 16 - 78 г
Top Gun 10.5 мм 680 DaN - 12 - 69 г
Booster 9.7 мм 680 DaN - 7 - 62 г
Wall Master II 10.5 мм 680 DaN - 7 - 68 г
Verdon II 9 мм - 490 DaN - 18 49 г
Cobra II 8.6 мм - 490 DaN - 17 48 г
Legend II 8.3 мм - 490 DaN - 10 45 г
Tandem 7.9 мм

720 DaN
двойная

-

14
двойная

- 41 г

Сравнительная таблица значений величины рывка веревок Beal

диаметр и тип веревки

сила рывка

количество рывков

фактор рывка 2

одинарная веревка Apollo 11 мм 720 DaN 16 одинарная веревка: 80 кг тестовая масса
Top Gun 10.5 мм 680 DaN 12
Booster 9.7 мм 680 DaN 7
Wall Master II 10.5 мм 680 DaN 7
норма UIAA <1200 DaN 5
полуверевка Verdon II 9 мм 490 DaN 18 полуверевка: 55 кг тестовая масса
Cobra II 8.6 мм 480 DaN 17
Legend II 8.3 мм 490 DaN 10
норма UIAA <800 DaN 5
двойная веревка Tandem 7.9 мм

720 DaN
двойная

14
двойная

двойная веревка: 80 кг тестовая масса
норма UIAA

<1200 DaN
двойная

12
двойная

Таблица свойств статических веревок

диаметр веревки

вес одного метра

усилие разрыва

удлинение

количество рывков с фактором рывка 1
(вес груза 100 кг)

сила рывка фактор рывка 0.3

9 мм 51 г 1900 кг 3.6% 5 (80 кг) 4.0 kN
10 мм 60 г 2400 кг 3.0% 5 (100 кг) 4.8 kN
10.5 мм 65 г 2700 кг 3.0% 10 (100 кг) 5.1 kN
11 мм 73 г 3000 кг 2.8% 13 (100 кг) 5.1 kN
11.5 78 г 3200 кг 2.6% 15 (100 кг) 5.3 kN

Вспомогательные веревки Beal

 

2 мм

3 мм

4 мм

5 мм

6 мм

7 мм

8 мм

5.5 мм
Aramide

5.5 мм
Dyneema

усилие разрыва

70 DaN 180 DaN 330 DaN 580 DaN 750 DaN 1050 DaN 1400 DaN 1800 DaN 1800 DaN

вес одного метра

2.4 г 6.5 г 11 г 19.5 г 23 г 31 г 40 г 23 г 20 г

Свойства стропы Beal

 

плоская стропа

трубчатая стропа

трубчатая суперстропа

20 мм

26 мм

30 мм

45 мм

50 мм

16 мм

19 мм

26

18

усилие разрыва

1000 DaN 1500 DaN 1600 DaN 2200 DaN 2400 DaN 800 DaN 1100 DaN 1500 DaN 1600 DaN

Данные для российской веревки (рыболовный фал)

диаметр веревки

вес одного метра

усилие разрыва

удлинение при разрыве веревки

количество рывков с фактором рывка 2
(вес груза 80 кг)

сила рывка
фактор рывка 2

10 мм 56 г 2156 кг 22—24% 2 (80 кг) 16—17.5 kN

Использование веревки
Конец веревки ввязывается в страхуемого. При работе в двойке страхующий, как правило, также ввязывает другой конец веревки в свою систему (это можно сделать способом, указанным на рисунке).

Другой возможный вариант — соединять конец веревки к системе с помощью карабина (в этом случае используется только карабин с муфтой). При этом надо знать, что если при срыве рывок придется поперек карабина — на муфту, в этом случае карабин разрушается при небольшой нагрузке (400 кг по нормам UIAA). По этой причине для первого в связке рекомендуется применять ввязывание порядок вщелкивания веревки в оттяжкув веревку.

При движении первого вверх он вщелкивает веревку в карабины, которые находятся на точках страховки, которые он делает по мере своего продвижения вверх. При этом сначала устанавливается точка страховки. Далее — в точку вщелкивается карабин или оттяжка. После этого в нижний карабин вщелкивается страховочная веревка. После этого первый продолжает движение вперед.

Для вщелкивания веревки в карабин рекомендуется следующий прием. Веревку вытягивают вверх (при этом ее придерживают, зажимая в зубах — это не очень удобно, да и небезопасно для зубов, но ничего лучшего не придумано). Если можно не зажимать в зубах — лучше не зажимать. Потом веревку перехватывают рукой и приемом, указанным на рисунке, вщелкивают ее в карабин.

Использование веревки зависит от ее типа:

Одинарная веревка — просто прощелкивается в точки. Она наиболее долговечная в использовании, более простая в работе. Менее защищенная от перебивания камнями, льдом или от обрезания об острый край. на легче, чем две полуверевки, но тяжелее цвилинговой. Необходимо следить, чтобы при прохождении через промежуточные точки она не делала больших перегибов, так как при этом возрастает трение при ее прохождении, веревку трудно выбирать, это может привести к срыву и замедляет работу первого. Чтобы избежать этого — необходимо использовать оттяжки, на точки ставить дополнительные карабины, точки располагать более оптимально, спрямляя ход веревки. 2 полуверевки — вщелкивают в карабины поочередно, распределяя одну веревку справа по ходу движения, другую — слева. Не допускается перехлест веревок. При использовании двух полуверевок уменьшается трение в карабинах и о рельеф, что помогает при работе на сложных маршрутах. Они более защищены от перебивания, хотя каждая веревка менее надежна сама по себе и быстрее выходит из строя из-за повреждений оплетки. Удобна при спуске дюльфером — не нужно нести еще одну веревку. Приемы страховки более сложные, чем для одинарной веревки. При нижней страховке надо следить, чтобы не было провисания веревки в каждой из ветвей. При вщелкивании веревки в карабин промежуточной точки первый в связке выбирает одну из веревок. Страхующий должен оперативно выдать ее и в случае необходимости — срочно выбрать в первоначальное положение. При этом расположение другой ветви веревки не меняется. Двойная веревка (или цвилинговая) — используют как одинарную, прощелкивают одновременно в каждый карабин. Ее легче выбирать первому (она легче проходит через карабины и о рельеф). Также удобно использовать при дюльфере. Легче, чем одинарная и двойная веревка. Но она легче повреждается, ее нельзя использовать для перил (жалко).

Нужно уметь пользоваться веревкой любого типа и в зависимости от имеющегося снаряжения или от маршрута применять те или иные технические приемы.

Хранение
Хранение веревки довольно важный вопрос. От того, как она хранится, зависти и то, сколько ею можно будет пользоваться.

Веревку следует хранить в сухом, темном, прохладном месте. Желательно в чехле. Ее нельзя держать в растянутом состоянии, при этом теряются ее эластические свойства. Если веревка загрязнилась — ее нужно постирать порошком, хорошо промыв от моющего средства, сушить ее нужно в разложенном (не растянутом!) состоянии. Если веревка грязная — во-первых, быстрее ухудшаются ее эластичные свойства, во-вторых, во время нагрузки натянутые внутренние волокна веревки могут повредиться о частички грязи, например о песчинки. Не подвергать веревку химическому и тепловому воздействию. Внимательно осматривать веревку на наличие повреждений оплетки или внутренних повреждений, особенно перед использованием. При наличии повреждений — заменить веревку или обрезать поврежденный участок. После сильных рывков веревку желательно заменить (смотря какой рывок и смотря сколько их было). Использовать веревку можно 2 года, но не более 5 лес с момента выпуска. При этом происходит старение волокон и их деполимеризация. После 5 лет ее свойства могут измениться, что она не будет пригодна для использования (т.е. не удовлетворять нормам UIAA). В книге Г. Хубера «Альпинизм сегодня» приводится следующий критерий продолжительности использования веревки — 11-мм веревку использовать не более 300 длин лазания.

Страховка в горах

Некоторые вопросы по работе с веревкой и организации страховочной базы

организация базыКак организуется база?
База организуется с использованием не менее 2 точек страховки. Сначала необходимо стать на самостраховку. После того, как страхующий стал на самостраховку, он блокирует петлей обе точки страховки (анкера).Одну из петель необходимо провернуть и после этого вщелкнуть в них карабин. При таком способе блокирования, если одна из точек вырвется, карабин останется на петле.

схемы блокировки точекКаким должен быть угол между ветвями петли, идущими к точкам страховки?
Чтобы разобраться в этом рассмотрим общий случай, когда веревка, закрепленная горизонтально в двух точках, находящихся на одной высоте, нагружается вниз посередине с силой F.

На веревку действует сила F1, растягивающая ее. При этом силы F1 по разную сторону веревки равны по величине, но имеют разное направление. Векторно складываясь, она образует силу, которая равна силе F по величине и противоположна по направлению.

Нетрудно определить, что F1=F/(2·cosa/2), где а — угол между веревками в точке приложения силы F. При F1=F/2, при а=180° значение силы бесконечно велико.

Чем угол ближе к 180°, тем больше будет сила растяжения веревки.По этой причин при организации перил чрез различные препятствия (реки, трещины) невозможно, чтобы веревка не имела провиса, как бы ее не натягивали.

Чем меньше провис, тем большая сила будет действовать на точки закрепления веревки. Это же надо иметь в виду при блокировании точек страховки — угол между ними нельзя делать, как мы увидим, больше 120°.

Приведем еще формулу для варианта блокирования точек треугольной схемой. При этом, как видно из таблицы ниже, угол а не должен быть больше 60°. F1=F/(2·sin(π/-a/4)).

Из таблицы видно, что при угле 120° для V-образного блокирования нагрузка на каждую точку страховки составляет 100% от приложенной силы и фактически эффект блокирования теряется (то есть две точки работают с той же надежностью, что и одна).

Для треугольной схемы величина угла, при котором уже не имеет смысла блокировать точки, составляет 60°.

Величина нагрузки на точки страховки в зависимости от угла блокирования точек страховки

тип блокирования
формула расчета нагрузки

угол а°

0

15

30

45

60

75

90

105

120

135

150

165

180

V-образная схема блокировки
F1=F/(2·cosa/2)

50 50 52 54 58 63 71 82 100 131 193 383 1146

треугольная схема блокировки
F1=F/(2·sin(π/4-a/4))

71 75 82 90 100 113 131 156 193 256 383 764 2292

организация самостраховкиКак осуществляется самостраховка?
Самостраховку можно организовать, использовав основную веревку, которой связаны партнеры. Это можно сделать с помощью узла «стремя», завязав его на карабин, как показано на рисунке. Это удобно, также, делать с помощью узла «проводник», который также вщелкивается в карабин точки страховки.

Длина самостраховки подбирается такой, чтобы обеспечить достаточно удобное и безопасное положение страхующего на пункте страховки. Самостраховка не должна быть слишком короткой или слишком длинной. Наиболее оптимальным вариантом является самостраховка с регулируемой длиной.

Для самостраховки на висячей базе удобнее использовать кусок основной веревки длиной около 1.5 м. Один конец ввязывается в систему, на конце другого завязывается восьмерка и вщелкивается карабин с муфтой. Для регулирования длины самостраховки используют схватывающий узел, закрепленный на системе. Удобно использовать фирменные самостраховки. Это стропа с большим количеством петель, в которые можно встегнуть карабин (такую самостраховку можно изготовить и самостоятельно из стропы).

Важным обстоятельством является то, что для самостраховки должна использоваться динамическая веревка (или стропа, имеющая динамические характеристики). При использовании статической веревки для самостраховки нельзя подниматься выше точки страховки, куда вщелкнута самостраховка. Действительно, как мы уже рассматривали, рывок при срыве зависит не от длины веревки, а от фактора рывка. Если подняться выше точки закрепления самостраховки, фактор рывка будет приближаться к 2. Если веревка динамическая, рывок будет не более 1200 кг (что тоже совсем не мало). Если же для самостраховки используется статическая веревка, рывок будет более жестким и это может привести к трагическим последствиям (разрушение карабина, вырыв точек страховки на базе, разрушение беседки или различные травмы).

ошибки при вщелкиванииКак правильно пользоваться карабинами и оттяжками на промежуточных точках?
У карабинов без муфты есть опасная особенность — веревка может самопроизвольно выщелкнуться из карабина, карабин может даже самопроизвольно выщелкнуться из анкера. Поэтому надо быть очень внимательным при работе с карабинами и оттяжками. Веревка должна вщелкиваться в карабин так, чтобы она шла снизу-вверх, как показано на рисунке. Веревка не должна прижимать муфту карабина. Это может привести к выщелкиванию веревки из карабина. То есть основной критерий правильного вщелкивания веревки в промежуточную точку тот, что при движении через него веревка должна приподнимать карабин, а не прижимать его к скале (или другому рельефу). На рисунках показаны характерные ошибки работы с карабинами на промежуточных точках.

Некоторые полезные узлы
Узел «штык»

На рисунках показана последовательность действий страхующего при срыве первого в связке. Рассмотрен вариант, когда страховка осуществлялась с использование узла UIAA.

завязывание узла «штык» и работа с ним

На рисунке 2 изображено, как завязывается узел «штык». После этого для того, чтобы он не развязался самопроизвольно, к петле узла «штык» вщелкивается карабином в базу (рис.4). Можно сделать иначе — завязать петлей штыка контрольный узел вокруг основной веревки. После этого страхующий проверяет состояние сорвавшегося. Данный узел не затягивается и достаточно легко развязывается при нагруженной веревке (рис. 8) и используется как один из приемов при самоспасении в двойке (связка из двух человек).

Узел UIAA
Этот узел можно использовать вместо тормозного устройства при страховке.

завязывание узла UIAA

С помощью этого узла можно развить усилие до 2500 кг. Часто используется в альпинизме. После небольшого обучения можно делать узел одним движением и одной рукой.

Как влияет на прочность веревки узлы, намокание и перегибы веревки?

узлы, намокание, перегибы

остаточна прочность, %

булинь 70—75
восьмерка 75—80
прямой узел 60—65
встречный узел 60—70
ткацкий узел 60—65
грепвайн 65—70
стремя 60—65
намокание и промерзание 60—70
перегиб веревки на радиусе 5 мм 70

Как осуществляется страховка при работе в связке?
Проиллюстрируем это выдержкой из веб-сайта компании Petzl (www.petzl.com). Перевод автора.

Страховка одинарной веревкой

рисунок 1

Лидер достигает пункта страховки. Он делает себе самостраховку с помощью узла «Стремя».

рисунок 2

Он крепит петлю за два анкера и вщелкивает муфтованный карабин (повернув одну из петель вокруг своей оси).

рисунок 3

Он страхует второго с помощью Grigri

рисунок 4

Второй становится на самостраховку. Страхующий пристегивает Grigri на свою беседку с помощью муфтованного карабина.

рисунок 5

Второй страхует первого с помощью Grigri закрепленного за беседку.

Страховка двойной веревкой

рисунок 1

Лидер организует базу и делает себе самостраховку каждой из веревок в отдельные карабины .

рисунок 2

Он вщелкивает петлю в два анкера ставит карабин с муфтой для организации страховки нижнего (одна из петель поворачивается вокруг оси).

рисунок 3

Он страхует нижнего узлом UIAA через карабин базы.

рисунок 4

Второй карабин он закрепляет на пояс для организации нижней страховки.

рисунок 5

Второй страхует первого с помощью узла UIAA, при этом веревка после карабина на поясе проходит через карабин базы и далее к первому.

Примечание автора: При работе с одинарной веревкой нижняя страховка первого на приведенных рисунках осуществляется через Grigri, который закреплен на поясе страхующего. Если при срыве первый завис на промежуточной точке — вопросов нет. Если же промежуточных точек нет или они не выдержали рывка, первый будет висеть непосредственно на этом Grigri. При этом возникнут некоторые проблемы. Во-первых, рывок должен прийтись не на пояс страхующего, а на самостраховку, поэтому длина самостраховки должна соответствовать данному приему, чтобы при рывке страхующий не травмировался или не потерял равновесие. Далее надо предусмотреть каким образом страхующий сможет закрепить веревку за базу и освободить Grigri и самого себя для дальнейших действий (если сорвавшемуся нужна помощь). Это можно сделать, если подготовлен жумар, закрепленный за базу, который можно поставить на нагруженную веревку. Далее выдав еще некоторое количество свободной веревки через Grigri, можно освободить тормозное устройство и себя от натянутой веревки. Все эти действия удобнее и быстрее делать, если веревка от Grigri идет к базовому карабину и после — к первому (именно так автор всегда и поступает). В чем же положительная сторона проиллюстрированного способа? В данном случае рывок на базу равен рывку в веревке (и рывку на страхуемого). Для варианта, который рекомендует автор, рывок на базу будет в 1.5—1.6 раз больше, чем рывок на веревку (см. величина рывка на верхнюю точку). Действительно, веревка идет от сорвавшегося в базовый карабин, перегибается в нем и идет к тормозному устройству. В карабине действует сила трения, поэтому на базовый карабин действует сила рывка плюс сила, с которым страхующий удерживает сорвавшегося, и как мы рассматривали, она составляет 50—66% от силы рывка. Что выбрать — дело вкуса. Автор предпочитает делать базу более надежной и в случае срыва первого быть в состоянии максимально быстро оказать ему помощь.

Какова надежность различных точек страховки?

Крючья

тип трещины

мягкие крючья

жесткие крючья

вертикальные трещины 200—1000 кг 300—1500 кг
горизонтальные трещины 500—1200 кг 1000—2000 кг

Шлямбурный крюк (3-х сантиметровый) — 2000 кг

Ледобуры

Длина ледобура

угол 12°

угол 5°

угол 0°

21 см 2325 кг 1690 кг 1020 кг
25 см 2425 кг 1550 кг 1450 кг
35 см 2425 кг 2280 кг -

Страховка на снегу через ледоруб

крепление страховки

короткий ледоруб

длинный ледоруб

за головку ледоруба 60 кг 80 кг
за центр ледоруба 120 кг 180 кг
за ледоруб, закопанный в снегу горизонтально 120 кг 140 кг
снежный якорь 220—250 кг

Проушина в летнем льду — 600—800 кг

Закладки: зависит от условий заложения закладки. У закладок, заложенных в хорошую трещину, максимальный рывок соответствует прочности тросиковой петли или стропы — 1500—2500 кг

Биомеханические свойства организма человека

При срыве человек падает вниз, при этом он не всегда может проконтролировать свое положение при падении. Наилучшее положение при этом — падать вертикально ногами вниз, сгруппировавшись. При этом от скалы лучше слегка оттолкнуться, чтобы не удариться о выступы и зависнуть чисто на веревке. Веревка крепится к человеку через страховочную систему. Она может быть верхней (обвязка), нижней (беседка) и комбинированной (типа парашютной подвески). Верхняя система самостоятельно в настоящее время не применяется. Нижняя система применяется наиболее широко. Комбинированная система применяется очень редко. Вместо нее, в основном, используют верхнюю и нижнюю системы совместно, блокируя их между собой. Что правильнее использовать и в каких случаях?

Рассмотрим процесс срыва и зависания человека на веревке. Сила рывка F приложена к точке закрепления веревки (на рисунке это беседка). Верхняя часть туловища «продолжает» двигаться вниз, оказывая давление на костно-мышечную систему. Наиболее уязвимым является позвоночник. Наибольшая нагрузка приходится на поясничные позвонки (компрессионное воздействие). Можно посчитать силу, с которой осуществляется данное воздействие. Несложно видеть, что она равна человек, зависший на веревкеFв=(mв/m)·F, где mв — масса верхней части тела, m-общая масса тела.

Нижняя часть тела «продолжает» двигаться вниз, оказывая растягивающую (разрывающую) нагрузку. Сила, с которой нижняя часть тела воздействует на костно-мышечную систему ниже точки закрепления веревки равна Fн=(mн/m)·F, где mн — масса нижней части тела. Использование беседки (нижней системы) является довольно оптимальным вариантом с точки зрения биомеханических характеристик тела человека и минимизации возможных последствий. Основная нагрузка приходится на ножные петли. Беседка делается таким образом, чтобы при рывке человек оказался в «полусидячем» положении. При этом ноги несколько сгибаются в тазобедренном суставе, а мышцы тазобедренного сустава амортизируют рывок. Ноги, «продолжая» двигаться вниз, стабилизируют положение тела и их «разрывающее» воздействие несущественно. Верхняя часть тела имеет массу около 1/3 общей массы человека. Она оказывает компрессионное воздействие на поясничные позвонки. Опасным моментом при применении беседки является воздействие рывка, когда тело расположено горизонтально, а пояс беседки — близко от центра тяжести человека. При этом рывок приходится на поясницу, а верхние и нижние части тела движутся вниз. На поясничный отдел позвоночника оказывается ломающее воздействие. Если рывок будет достаточно сильным, возможен перелом позвоночника. Для того чтобы избежать этой ситуации, веревку нужно закреплять как можно выше центра тяжести человека.

Использование только грудной обвязки — наиболее опасно. При этом компрессионное воздействие части тела выше обвязки невелико, зато вес части тела ниже обвязки составляет около 4/5 общего веса тела, разрывающее усилие приходится на весь позвоночник, в большей мере на его грудную часть. Сила этого воздействия составляет, соответственно, 4/5 силы рывка. При этом кроме разрывающего усилия на позвоночник действует сила, сжимающая грудную клетку в месте расположения обвязки. Эта сила составляет F-1.5F. При рывках, даже не очень сильных, возможны переломы ребер.

Наиболее безопасным является использование комбинированной системы (которая ввиду громоздкости и ряда неудобств при их использовании применяется крайне редко). В комбинированной системы рывок приходится на тазовую часть тела, как и для беседки. Нагрузки в горизонтальном направлении быть не может, потому что точка крепления веревки находится на уровне груди, а центр тяжести — значительно ниже (в паховой области). Грудная и нижняя части комбинированной системы жестко зафиксированы относительно друг друга и тело человека равномерно воспринимает рывок со стороны веревки через ремни системы. Это особо существенно при сильных неконтролируемых рывках, а также при срыве с рюкзаком. Рюкзак смещает общий центр тяжести вверх и человек во время срыва даже может оказаться перевернутым вниз головой.

Совместное использование беседки и обвязки имеет ряд проблем. Способ блокирования может быть различным. Если при рывке нагрузится только обвязка, мы имеем ту же ситуацию, что и при использовании одной обвязки. Чтобы этого не было, беседку и обвязку нужно жестко фиксировать между собой (веревка привязывается в месте расположения обвязки, но нагрузка рывка воспринимается беседкой), либо страховочная веревка проходит через обвязку и ввязывается в беседку. Обвязка должна не воспринимать часть усилия, а лишь изменять направление действия рывка вдоль тела человека.

В последнее время за рубежом все чаще в качестве страховочной системы используют только беседку. Рассмотрим, когда это возможно и безопасно. Беседка от сблокированных беседки с обвязкой отличаются только тем, что расстояние от точки закрепления веревки (или осью вращения) до центра массы человека у них различно (у беседки это расстояние меньше). При срыве рывок действует на тело не мгновенно, а как мы увидим в приложении в течение некоторого времени, при этом величина рывка (силы упругости) меняется по синусоиде от нулевого значения до максимального и так же по синусоиде убывает. Опасным является тот случай, когда рывок действует в поперечном по отношению к телу направлении. При этом центр массы расположен в стороне от направления приложения силы, поэтому на тело начинает действовать вращательный момент. Тело имеет соответственно момент инерции и оно начнет с определенным угловым ускорением вращаться так, что центр масс будет перемещаться в нижнее положение, то есть тело начнет принимать вертикальное положение. Этот процесс занимает некоторое время. Если это время меньше, чем время, когда веревка полностью растянется и рывок будет максимальным, тогда максимальный рывок придется на человека в тот момент, когда он уже будет располагаться вертикально и причин для получения травмы не будет. Короче говоря, рывок изменяет положение тела в вертикальное положение. Если мы имеем достаточно мягкую веревку, то так оно и будет. Рассчитаем, когда это условие выполняется.

Тело человека, вращаясь вокруг оси — места закрепления веревки, двигается как физический маятник, совершая колебания, близкие к гармоническим. Период таких колебаний равен: формула, где J — момент инерции человека вокруг горизонтальной оси, m — масса человека, a — ускорение, с которым его скорость меняется под действием силы упругости веревки, x — расстояние от точки закрепления веревки до центра тяжести. Момент инерции тела человека можно оценить, посчитав его за стержень длиной h и массы m, тогда:
формула, подставив это значение для J в формулу с периодом колебаний, получим:
формула, где Tчел — период колебаний человека.
В приложении мы определили, что сила рывка со стороны веревки действует также по гармоническому закону с периодом Tвер:
формула, где m — масса человека, Lo — длина выданной веревки и α — жесткость веревки. Сила воздействия веревки на человека: С другой стороны F=ma. Итак, мы должны выяснить, когда Твер>Тчел, или Твер/Тчел>1 (в этом случае тело человека примет вертикальное положение раньше, чем когда величина рывка примет максимальное значение). При этом: формула, подставим сюда выражения для F, получим: формула, после сокращений получим выражение: формула

Итак, для случая беседки имеем: если при рывке растяжение веревки равно росту человека, его тело успеет принять вертикальное положение, если в момент начала растяжения веревки первоначальное положение не было вертикальным (например — горизонтальное).

Широкое распространение использования беседок за рубежом, таким образом, связано с тем, что люди стали ходить на мягких веревках и рывки на таких веревках такие, что позволяют использовать беседку без грудной обвязки.

Выводы и рекомендации

При использовании и выборе методов страховки необходимо учитывать конкретную специфику маршрута, снаряжения, группы, знать и уметь на практике использовать все возможные техники. Для начинающих альпинистов желательно выработать четкие правила и действовать по ним. При прохождении сложных маршрутов применимость жестких правил условна и приходится использовать весь набор технических приемов. Есть, конечно, достаточно общий набор правил, которые применимы достаточно широко. Попытаемся некоторые из них здесь привести.

Безопасность — основной критерий при оценке ситуации. Срыв на реальном маршруте — всегда Ч.П. Срывов нельзя допускать (по крайней мере, всячески их избегать). Если техника лазания не позволяет безопасно без срыва преодолеть рельеф — используйте ÈÒÎ Если начал идти на ÈÒÎ, то перейти с ÈÒÎ на свободное лазание психологически тяжело. Заранее делайте хорошие точки страховки перед сложными местами. Хорошая надежная база — гарантия безопасности. Верхняя точка — самое слабое место в страховочной цепи, старайтесь делать точки страховки качественнее. Используйте качественное альпинистское снаряжение (здоровье будет лучше). Меньше рывок — меньше проблем. Маршрут старайтесь проходить быстрее. При хождении с одновременной страховкой самое опасное — неожиданный срыв нижнего. Если вы собираетесь протравливать — подготовьтесь к этому заранее и оставьте свободную веревку для протравливания. Срыв очень редко бывает неожиданным, обычно ситуация назревает. Старайтесь заранее оценить ситуацию и подготовиться к срыву напарника заранее — до подачи команды об этом и до самого срыва. Не кладите точки долго, старайтесь заранее найти подходящее место для точки. Если есть возможность быстро по ходу сделать точку — лучше ее сделать. После хорошей точки можно сделать одну-две плохих. После плохой точки старайтесь найти место для хорошей точки. Всегда имейте на группу молоток с крючьями (хотя бы 3—5 штук). Не мешайте работать первому. Если его действия вам сильно не нравятся — лучше все высказать ему на базе и заменить, показав собственным примером как работать лучше. В любой ситуации старайтесь предполагать худшее, а надеяться на лучшее. Исходите не из того, что могло бы быть, а из того, какая ситуация сложилась. Знакомый путь — всегда короче. Страх — совершенно необходимая вещь в горах. Это не недостаток, а защитный механизм. Но им, конечно, нужно уметь управлять.

Приложение. Математическая модель: веревка и нагрузки, возникающие в ней при срыве

Приведем вывод формулы, описывающей поведение альпинистской веревки при срыве первого в связке.

П=P·(H+L+ΔL) — потенциальная энергия человека

P — вес человека (P=mg)
H — превышение человека над последней точкой страховки
L — длина свободной веревки
ΔL — длина, на которую веревка максимально растянулась

Аторм=Fторм·Δs — работа сил трения в тормозном устройстве

Fторм — сила трения веревки в тормозном устройстве
Δs — длина протравливания веревки

Учтем силы трения в карабине:
F1=F-Fтрен
Fтрен=f·N=f·(F+F1)=f·(2F-Fтрен)
Fтрен=(2f/(1+f))·F, где f — коэффициэнт трения
N=2F-Fтрен=(2f/(1+f))·F
Атрен=(1/2)·Fтрен·ΔL' — работа сил трения в карабине (сила трения меняется линейно, одновременно с силой F, от нуля до максимального значения Fтрен, поэтому в формуле присутствует коэффициент 1/2).
ΔL=ΔL'+ΔL'' — растяжение веревки складывается из растяжения веревки со стороны базы ΔL' и растяжения веревки со стороны сорвавшегося ΔL''.
E=(1/2)·(F·ΔL''+F1·ΔL') — энергия деформации веревки.
E+Атрен=(1/2)·(F·ΔL''+F1·ΔL')+(1/2)·Fтрен·ΔL'
E+Атрен=(1/2)·(F·ΔL''+(F-Fтрен)·ΔL'+Fтрен·ΔL')=(1/2)F·ΔL
F=α·(ΔL/Lo) — сила рывка (усилие деформации веревки)
α — коэффициент упругости веревки
Lo — общая длина ненагруженной веревки

срыв ведущегоΔL=ΔL'+ΔL''=(1/α)·(F·L+F1·L1)=(1/α)·(F·L+(F-Fтрен)·L1)
ΔL=(1/α)·(F·L+(F·(1-(2f/(1+f))·L1=(1/α)·(F·L+F·L1-(2f/(1+f))·F·L1)
ΔL=(F·Lo/α)·(1-(2f/(1+f))·(L1/Lo))
L1 — длина веревки между базой и верхней (последней) точкой
K=(H+L)/Lo — фактор рывка
П=Е+Атрен+Аторм — из закона сохранения энергии следует, что потенциальная энергия человека П переходит в энергию деформации веревки Е, и работу сил трения в карабине Атрен и работу сил трения в тормозном устройстве Аторм.

После подстановки предыдущих выражений в закон сохранения энергии получим:
P·(H+L+ΔL)=(1/2)F·ΔL+Fторм·Δs
(1/2)F·ΔL-P·ΔL-P(H+L-(Fторм/P)·Δs)=0, разделим выражение на Lo
(1/2)F·(ΔL/Lo)-P·(ΔL/Lo)-P((H+L)/Lo-(Fторм/P)·(ΔL/Lo))=0
(1/2)F·(ΔL/Lo)-P·(ΔL/Lo)-P(K-(Fторм/P)·(ΔL/Lo))=0 (K —фактор рывка)

Подставим сюда полученное выражение для ΔL=(F·Lo/α)·(1-(2f/(1+f))·(L1/Lo))

формула=0

Получаем следующее решение уравнения для F:

формула — сила рывка веревки.

формула — рывок на карабин.

формула — рывок на базу (или страхующего).

формула — относительное удлинение веревки при величине рывка на веревку F.

Теперь рассчитаем время воздействия рывка на сорвавшегося и распределение этого рывка во времени. После срыва человек падает вниз и веревка начинает нагружаться, тормозя падение человека и действуя как амортизатор. На человека со стороны веревки действует силы:

F=-(α/Lo)·ΔL — сила упругости веревки;
P=mg — сила тяжести (Р — вес человека).

Будем считать, что затухания нет. В этом случае уравнение движения запишется следующим образом:

m·ΔL''+(α/Lo)·L=mg
ΔL''+(α/(mLo))·ΔL=g

решением данного дифференциального уравнения есть функция:

формула

это косинусоида, смещенная на величину ((mg)/α)·Lo (гармонические колебания).

Для величины силы упругости (рывка веревки) мы имеем следующую зависимость силы от времени: F(t)=m·ΔL''

формула — как видно — это тоже косинусоида.

формула — полупериод колебаний при рывке.

Fmax=-(α/Lo)·ΔLmax  

T/2 (время)

Рывок можно охарактеризовать временем воздействия на человека и элементы страховки — полупериодом косинусоиды. За это время сила рывка возрастает от нуля до максимума и снова уменьшается до нуля.

Надо еще заметить, что данное уравнение описывает поведение системы лишь при натянутой веревке. При движении в верхней части (положительный период косинусоиды) сила упругости на человека не действует, и движение происходит только за счет силы тяжести (L''=g, это движение по параболе), но это не особо интересно для рассмотрения процесса страховки. После первого полупериода за счет диссипативных сил происходит уменьшение амплитуды колебаний (период не меняется). Если элементы страховочной цепи выдержали первый рывок, последующие не окажут существенного воздействия.

Время воздействия рывка нам интересно для оценки его жесткости: жесткость рывка тем выше, чем больше его сила и чем меньше время его воздействия. Короткий рывок оказывает более разрушающее воздействие, чем более плавный рывок, имеющий такую же силу.

Библиография

1.   Technique de1’alpinisme, sous der de Bernard Amy. France, 1977. (Ветер странствий № 16, ФИС, 1981 г.).

2.   Герман Хубер. Альпинизм сегодня. М., ФИС, 1980 г.

3.   Ф. Кропф. Спасательные работы в горах. М., 1975 г.

4.   Е. Казакова

5.   Ветер странствий № 18, ФИС, 1983 г.

6.   Mountaineering. The freedom of the hills. 5-th edition. 1991.

7.   Веб-сайт компании Petzl (www.petzl.com).

8.   Веб-сайт компании Beal (beal-planet.com).


Информация о работе «Страховка в горах»
Раздел: Туризм
Количество знаков с пробелами: 90961
Количество таблиц: 17
Количество изображений: 30

Похожие работы

Скачать
37430
1
4

... средства для организации точек страховки и пр.).   2. Классификация техники страховки с применением основной веревки   Как и в случае любой иной туристской техники, технику страховки принято разделять на индивидуальную технику (самостраховка) и групповую (командная страховка). Известный спортсмен, методист и педагог, обучавший технике и тактике горного туризма и альпинизма в СССР, Я. Аркин ( ...

Скачать
24336
0
0

в течение длительной истории развития после первоначального складкообразования они испытали влияние и других процессов горообразования. Цель работы – изучить лимитирующие природные факторы в основании гор. Задачи работы – рассмотреть происхождение гор; изучить сели, лавины, оползни, вулканы как лимитирующие природные факторы. 1. Происхождение гор Никто не может с уверенностью объяснить ...

Скачать
131658
2
1

... двищення рівня фізичної підготовленості учнів. Цей процес дає можливість ознайомити дітей з народними звичаями, традиціями, обрядами, сприяє вихованню у молодших школярів національної гордості, почуття патріотизму. Походження українських народних рухливих ігор пов'язано з історичними і побутовими факторами. В українських народних рухливих іграх чітко відображені звичаї народу України, його побут, ...

Скачать
117418
13
9

... 000 голов ) Австралия 1,6 1,7 26 26 Аргентина 2,6 2,6 52 50 Бразилия 6,2 6,0 144 146 Восточная Европа 1,0 1,0 13 13 ЕС 7,8 7,8 83 82 Индия 1,3 1,3 277 279 Канада 1,0 1,0 13 13 Китай 4,9 5,4 140 147 Мексика 1,8 1,8 27 26 Россия 2,6 2,3 36 34 США 11,6 11,5 101 99 Украина 1,2 0,9 15 14 Свинина (в 1 000 000 тонн) ...

0 комментариев


Наверх