3. Физическая модель процесса акустоэлектронного взаимодействия.

Передача импульса от волны электронам сопровождается поглощением звуковой энергии, поэтому действующая на электрон сила пропорциональна коэффициенту электронного поглощения звука ae и интенсивности акустической волны I. Плоская волна, интенсивность которой при прохождении слоя толщиной Dx: уменьшается за счет электронного поглощения на величину aeIDx, передает в среду механический импульс

aeIDx/us, приходящийся на neDx электронов слоя (vs - скорость звука. ne - концентрация свободных электронов). Следовательно, на отдельный электрон действует средняя сила

(1)

Под действием этой силы появляется акустоэлектрический ток, плотность которого Jac=mneF(m - подвижность электронов) определяется соотношением

Jac=maeI/us (2)
(соотношение Вайнрайха). В случае произвольных акустических полей выражение для акустоэлектрического тока получается как среднее по времени значение произведения переменной концентрации свободных носителей n, возникающих под действием акустических полей в проводнике, и их переменной скорости v.

Jac=e<> (3) ,(e - заряд электрона).

Для наблюдения акустоэлектрического эффекта измеряют либо ток в проводнике, в котором внешним источником возбуждается звуковая волна, либо напряжение на его разомкнутых концах. В последнем случае на концах проводника возникает эдс, индуцированная звуковой волной (акустоэдс):

, (4)
где L - длина проводника. I0 - интенсивность звука на входе образца, a = ae+a0 – коэффициент поглощения звука, учитывающий как электронное поглощение aeтак н решеточное ao, s- проводимость образца.

Основной механизм поглощения в полупроводниках в широком диапазоне температур и частот электронное поглощение ультразвука. Несколько механизмов АЭВ, наличие различных типов носителей и примесных центров, возможность изменения концентрации и подвижности, влияние электрического и магнитного полей приводят к сложной картине акустического поглощения в полупроводниках. В пьезополупроводниках пьезоэлектрический механизм АЭВ преобладает над всеми другими при температуpax вплоть до комнатных и в диапазоне частот вплоть до десятков Гц и дает основной вклад в поглощение по сравнению с другими механизмами диссипации акустической энергии. Для комнатных температур, когда длина свободного пробега электрона много меньше длины волны (kle<<1), коэффициент поглощения имеет вид

,
где K2=4p2b2/e0rvs2 коэффициент электромеханической связи.

На высоких частотах, rд=Öe0ve/4pe n0 (rд – радиус Дебая-Хюккеля, ve - тепловая скорость электрона, n0 - плотность электронов), степень экранирования принимает большие значения.

В процессе АЭВ сила F, действующая на свободные носители со стороны деформированной решетки, вызывает электронные токи и перераспределение носителей. Возникающие при этом электромагнитные поля частично компенсируют силу F, и реально действующая сила оказывается в результате экранирования в e(w,k) раз меньше (e- диэлектрическая проницаемость кристалла; w и k- частота и волновой вектор УЗ-волны). Перераспределенные заряды и индуцированные поля действуют на решетку с силой, объемная плотность которой пропорциональна в конечном итоге амплитуде деформации. Следующие графики отражают зависимость силы воздействия на электроны со стороны акустических волн на различных частотах.

Взаимосвязь силы акустоэлектронного взаимодействия и частоты колебаний.

(F2(n) – зависимостm для полупроводникового материала с меньшим значением концентрации собственных носителей).

 

Эффект увлечения обнаруживается в виде тока или ЭДС. Плотность тока может быть записана в виде:

, где е, m*,<t> - заряд, эффективная масса, и усредненное время релаксации носителей.

 

Приложение

Упругие волны – упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразной средах. Например, волны, возникающие в земной коре при землетрясениях, звуковые и ультразвуковые волны в жидкостях и газах и др. При распространении У. в. происходит перенос энергии упругой деформации в отсутствии потока вещества, который имеет место только в особых случаях, например при акустическом ветре. Всякая гармоническая У. в. характеризуется амплитудой и частотой колебания частиц среды, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны. Особенность У. в. состоит в том, что их фазовая и групповая скорости не зависят от амплитуды и геометрии волны (плоская, сферическая, цилиндрическая волны).

Усиление акустических волн в полупроводниках возникает, когда имеется направленное движение (дрейф) носителей заряда вдоль распространения волны. Дрейф создается внешним электрическим полем.

Нелинейные эффекты в упругой среде С повышением интенсивности звуковой волны все большую роль начинают играть нелинейные эффекты, искажающие ее форму, ограничивающие рост ее интенсивности при усилении или уменьшающие ее затухание. В проводящих средах, помимо обычного решеточного ангармонизма, существует специфический механизм нелинейности, связанный с захватом электронов проводимости в минимумы потенциальной энергии электрического поля, сопровождающего акустическую волну {т. н. электронная акустическая нелинейность). В полупроводниках такой механизм нелинейности становится существенным при интенсивностях ультразвука, значительно меньших тех, при которых сказывается ангармонизм решетки, характерный для диэлектриков. Захват электронов электрическим полем волны приводит к различным эффектам в зависимости от соотношения между длиной звуковой волны и длиной свободного пробега электрона.

Величина акустоэлектрического эффекта, так же как и значение электронного поглощения звука, зависит от частоты УЗ. Акустоэлектрический эффект максимален, когда длина волны оказывается одного порядка с радиусом дебаевского экранирования для свободных электронов. Акустоэдс существенно меняется с изменением $\sigma$и имеет максимум в области значений $\sigma_m$, где электронное поглощение звука также максимально. Такие зависимости наблюдаются в фотопроводящих полупроводниках, в которых значительные изменения проводимости происходят при изменении освещенности.

Акустоэлектрический эффект экспериментально наблюдается в металлах и полупроводниках. Однако в металлах и центросимметричных полупроводниковых кристаллах, таких, как Ge и Si, он невелик из-за слабого акустоэлектронного взаимодействия. Значительный акустоэлектрический эффект (на 5 - 6 порядков больший, чем в Ge) наблюдается в пьезополупроводниках (CdS, CdSe, ZnO, CaAs, InSb и др.). За счет сильного пьезоэлектрического взаимодействия электронов проводимости с акустической волной на частотах $(0,5 - 1)10^9с^{-1}$и образцах длиной около 1 см возникает акустоэдс $\sim$нескольких вольт при интенсивности звука $\sim$1 Вт/см2.

Особый характер носит акустоэлектрический эффект в полупроводниках, помещенных в сильное электрическое поле E, где коэффициент электронного поглощения УЗ зависит от скорости дрейфа носителей $v_d=\mu E$. При сверхзвуковой скорости дрейфа ($v_d\gt v_s$) коэффициент $\alpha_e$меняет знак и вместо поглощения звуковой волны происходит ее усиление. При этом акустоэдс также меняет знак: звуковая волна уже не увлекает, а тормозит электроны проводимости. Средняя сила, действующая на электрон, направлена в сторону, противоположную направлению распространения волны, так что воздействие УЗ уменьшает электрический ток в образце - акустоэлектрический ток вычитается из тока проводимости.

В сильных электрических полях акустоэлектрический эффект имеет место даже в отсутствие внешней волны, из-за того что в полупроводнике происходит генерация и усиление фононов внутри конуса углов $\theta$вокруг направления дрейфа носителей, для которых vdcos q > vs ­– акустический аналог Черенкова-Вавилова излучения. Сила, действующая на носители со стороны нарастающего фононного потока, имеет направление, противоположное дрейфу носителей. В результате происходит их эффективное торможение, приводящее к неоднородному перераспределению электрического поля в образце (образуется т. н. акустоэлектрический домен) и падению полного тока в нем. На опыте этот эффект обычно наблюдается но отклонению электрического тока через образец от его омического значения $J_0=\sigma UL$, где U - приложенное к образцу напряжение.

Из-за анизотропии акустоэлектронного взаимодействия генерация фононов может происходить преимущественно вдоль какого-либо направления $\vec m$, не совпадающего с направлением дрейфовой скорости электронов $v_d$, поэтому акустоэлектрическая сила, действующая на носители, будет иметь составляющую n, перпендикулярную дрейфовой скорости. В этом случае наблюдается разность потенциалов в направлении, перпендикулярном приложенному электрическому полю (рис. 4, а),- возникает поперечный акустоэлектрический эффект. Кроме того, неоднородное по сечению кристалла распределение усиливаемых фононов приводит за счет акустоэлектрического эффекта к появлению в кристалле вихревого тока, а следовательно, и магнитного момента, направленного перпендикулярно как скорости дрейфа $v_d$, так и направлению преимущественной генерации фононов $\vec m$.

Значительный акустоэлектрический эффект наблюдается при распространении поверхностной акустической волны по поверхности проводящего кристалла. На опыте акустоэлектрический эффект обычно наблюдается в слоистой структуре пьезоэлектрик - полупроводник. Переменное электрическое поле, возникающее в пьезоэлектрике за счет пьезоэффекта и сопровождающее волну, проникает в полупроводник и вызывает токи и перераспределение свободных носителей в приповерхностном слое. Поскольку движение носителей происходит как параллельно границе раздела, так и перпендикулярно к ней, то в структуре наблюдается как продольный, так и поперечный акустоэлектрический эффект. Продольный акустоэлектрический ток неоднороден по сечению полупроводника: он максимален у поверхности и убывает, осциллируя, в глубь его, что приводит к появлению вихревых токов и возникновению магнитного момента. Поперечная компонента акустоэлектрического тока обусловливает появление поперечной акустоэдс, не меняющей знака при изменении направления распространения поверхностной акустической волны на противоположное.

Используемые иcточниrи информации

 

Викторов И.А. "Звуковые ПАВ в твредых телах." M91

Кравченко А.Ф. "Физические основы функциональной электроники" Новосиб. 2000

Зюбрик А.И. , Бурак Я.В. "Акустоэлектроника" Львов 86

Викторов И. А., Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике, М., 1966.

Физический энциклопедический словарь. Коллектив авторов М2000

Пустовойт В.И. "Взаимодействие электронных потоков с упругими волнами решетки" УФН 1969 т.97

Russian Scientific Network. Сайт по физике. http://www.nаturе.ru/

httр://рhys.wеb.ru/ – Научная сеть. МГУ им. Ломоносова

Physics News Update, http://aip.оrg/physnеws

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,
194021 Санкт-Петербург, Россия http://www.ioffe.ru

bs.yandex.ru


Информация о работе «Взаимодействие электронов с поверхностными акустическими волнами»
Раздел: Физика
Количество знаков с пробелами: 23575
Количество таблиц: 2
Количество изображений: 9

Похожие работы

Скачать
186145
44
28

ство используется в системах радиочастотной идентификации на поверхностных акустических волнах.   1.3.2 Возможные принципы построения и функционирования РЧИД-меток на ПАВ До настоящего момента наиболее распространенными были метки с использованием линии задержки. Линия задержки, один из приборов на ПАВ, включает в себя два ВШП, один из которых предназначен для возбуждения, а второй для приема ...

Скачать
72188
6
20

... является измерение сдвига частоты. То есть в качестве сенсорного эффекта в данном типе датчиков используется различие рабочих частот поверхностно-акустической волны прибора в различных средах. Некоторые задачи, решаемые ПАВ сенсорами В работе [6] авторами решена задача классификации ароматов и определения степени свежести пищевых продуктов по запаху с использованием аналитической микросхемы, ...

Скачать
75193
5
20

... можно пренебречь. А основное время процесса будет состоять из времени определения частоты поверхностно-акустической волны, времени подвода газа необходимой концентрации и пр. Таким образом, получаем еще одно подтверждение необходимости дальнейшего повышения автоматизации измерительной установки. Для математического получения градуировочной характеристики ПАВ датчика воспользуемся уравнением [20]: ...

Скачать
33909
1
5

... граничное условие заключается в отсутствии механических напряжений. Граничным условием для вектора электрической индукции является непрерывность его нормальных составляющих в отсутствии поверхностных зарядов. Поверхностные акустические волны (ПАВ), упругие волны, распространяющиеся вдоль свободной поверхности твердого тела или вдоль границы твердого тела с другими средами и затухающие при ...

0 комментариев


Наверх