4. В случае дуги в воздухе между угольными электродами

преобладает излучение раскалённых электродов, главным образом,положительного кратера.

Излучение анода, как излучение твёрдого тела, обладает

сплошным спектром. Интенсивность его определяется темпера-турой анода. Послздняя является характерной величиной для дуги в атмосферном воздухе при аноде из какого-либо данного материала, так как температура анода от силы тока не зави-сит и определяется исключительно температурой плавления или иозгонки материала анода. Температура плавления или возгон-ки зависит от давления, под которым находится плавящееся или возгоняемое тело. Поэтому температура анода, а следова-тельно, и интенсивность излучения положительного кратера зависят от давления, при котором горит дуга. В этом отно-шении известны классические опыты с угольной дугой под давленрюм, приведшие к получению очень высоких температур.

Об изменении температуры положительного кратера с давле-

нием даёт понятие кривая рис. 6. Прямая линия, на которую

на этом чертеже укладываются точки для давлений от 1 атм

и выше, служит подтверждением предположения, что темпера-тура положительного кратера определяется температурой плав-ления или возгонки вещества анода, так как в этом случае должна существовать линейная зависимость между ln р и 1/T. Отступление от линейной зависимости при более низких дав-лениях объясняется тем, что при давлении ниже 1 атм коли-чество тепла, выделяющееся на аноде, недостаточно для н

Рис. 6. Изменение температуры угольного анода электрической дкги в воздухе при изменении давления. Шкала по оси ординат логарифмическая.


агревания анода до температуры плавления или возгонки.

Температура катодного пятна дуги Петрова всегда на несколь-

ко сот градусов ниже температуры положительного кратера.

Высокие температуры шнура дуги не могут быть определены

при помощи термоэлемента или болометра. В настоящее время

для определения температуры в дуге применяют спектральные

методы.

При больших силах тока температура газа в дуге Петрова

может быть выше температуры анода и достигает 6000° К. Такие высокие температуры газа характерны для всех случаев дугового разряда при атмосферном давлении. В случае очень больших давлений (десятки и сотни атмосфер) температура в центральных частях отшнуровавшегося положительного столба дуги доходит до 10 000° К. В дуговом разряде при низких давлениях температура газа в положительном столбе того же порядка, как и в положительном столбе тлеющего разряда.

Температура положительного кратера дуги выше, чем темпе-ратура катода, потому что на аноде весь ток переносится электронами, бомбардирующими и нагревающими анод. Электроны

отдают аноду не только всю приобретённую в области анодного

падения кинетическую энергию, но ещё и работу выхода(«скры-

тую теплоту испарения» электронов). Напротив, на катод по-

падает и его бомбардирует и нагревает малое число положи-тельных ионов по сравнению с числом электронов, попадающих на анод при той же силе тока. Остальная часть тока на като-де осуществляется электронами, при выходе которых в случае

термоэлектронной дуги на работу выхода затрачивается тепло-

вая энергия катода.


5. Благодаря тому, что дуга имеет падающую характеристику, она может быть использована в качестве генератора незатуха-ющих колебаний. Схема такого дугового генератора представ-лена на рис. 7. Условия генерации колебаний в этой

с
хеме можно вывести из рассмо-

трения условий устойчивости ста-

ционарного разряда при заданных

параметрах внешней цепи.

Пусть электродвижущая сила

источника постоянного тока, пи-

т

Рис. 7. Принципиальная электри-ческая схема дугового генератора.


ающего разряд (рис.7), равна ع,

напряжение между электродами

трубки U, сила стационарного то-

ка через разрядную трубку при данном режиме равна I, ём-кость катод-анод трубки плюс ёмкость всех подводящих прово-дов С, самоиндукция в цепи L, сопротивление, через которое подаётся ток от источника, R. При установившемся режиме постоянного тока будем иметь:

ع=Uо+IR (5)

Допустим, что этот стацийнарный режим нарушен. Разрядный

ток в какой-либо данный момент времени равен I+i, где i—малая величина, а разность потенциалов между электродами равна U.

Введём обозначение

U′=dU/dI

(dU/di)i=0 равно тангенсу угла наклона касательной к вольтамперной характеристике в рабочей точке, соответ-ствующей выбранному нами первоначально режиму (ток I). Посмотрим, как будет дальше изменяться i. Если i будет возрастать, то данный режим разряда неустойчив; если, наоборот, i беспредельно убывает, то режим разряда устой-чивый.

Обратимся к вольтамперной характеристике рассматриваемого

разрядного промежутка U=f(I+i)- Через трубку идёт ток

I+i и ёмкость С заряжается (или разряжается). Разность

потенциалов на ёмкости С уравновешивается в этом случае

не только напряжением на разрядном промежутке, но и э.д.с.

самоиндукции цепи. Пусть I+i2 —общий ток через сопротивле-

ние R. Обозначим ток, заряжающий ёмкость С, через i1; мгно-

венное значение разности потенциалов на ёмкости С— через U1.Разность потенциалов между электродами дуги будет U0+iU’.

Имеем:

ع=U1+(i+I2)R, (6)

U1-U0=U’i+Ldi/dt, (7)

i2=i1+i. (8)

Добавочный заряд Q на ёмкости С по сравнению со стационарным режимом:

Q=∫i1dt=(U1-U0)C. (9)

Вычитая (5) из (6), находим:

U1-U0=-i2R (10)

Выражения (7), (8) и (10) дают:

U'i+Ldi/dt=-R(i+i1). (11)

Выражения (7) и (9) дают:

1/C∫i1dt=U’i+Ldi/dt. (12)

Дифференцируя (12) по t и вставляя результат в (11), находим:

U’i+Ldi/dt=-iR-RCU’di/dt-RLCdІi/dtІ. (13)

или

dІi/dtІ +(1/CR+U’/L)di/dt + 1/LC(U’/R+1)i=0 (14)

Формула (14) представляет собой дифференциальное уравнение,

которому подчиняется добавочный ток i.

Как известно, полный интеграл уравнения (14) имеет вид:

i=А1е^r1t+А2е^r2t, (15)

где r1 и r2— корни характеристического уравнения, опре-деляемые формулой

r=-1/2(1/CR+U’/L)+√1/4(1/CR+U’/L)І-1/LC(U’/R+1). (16)

Если подкоренная величина в (16) больше нуля, то r1 и r2

оба действительны, i изменяется апериодически по экспо-ненциальному закону и решение (15) соответствует апериодическому изменению тока. Для того чтобы в рас-сматриваемой нами схеме возникли колебания тока, необ-ходимо, чтобы r1 и r2 были комплексными величинами, т. е. чтобы

1/LC(U’/R+1)>1/4(1/CR+U’/L)І (17)

В этом случае (15) можно представить в виде

i=A1e-δt+jωt+ A2e-δt-jωt, (18)

где

δ=1/2(1/CR+U’/L); i=√-1.

При δ < 0 колебания, возникшие в рассматриваемой цепи, будут раскачиваться. При δ > 0 они быстро затухают, и разряд на постоянном токе будет устойчив.

Таким образом, для того чтобы в рассматриваемой схеме в конечном итоге могли установиться незатухающие колебания, надо, чтобы

(1/CR+U’/L)0. (22)

Условия (21) и (22) представляют собой общие условия

Устойчивости разряда, питаемого постоянным напряжением. Из

(21) следует, что при возрастающей вольтамперной характе-

ристике разряд всегда устойчив.


Объединяя это требование с условием (22), находим, что

при падающей характеристике разряд может быть устойчивым

только при

|U’|


Информация о работе «Дуговой разряд в газах»
Раздел: Физика
Количество знаков с пробелами: 24016
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
145500
0
19

... вредных примесей металла. В заключение раздела отметим, что дуговой разряд, открытый В.Б. Петровым в 1802 г., не исчерпал еще всех своих возможностей и областей применения, включая и область сварочного производства. 3.2 Электрошлаковая сварка Разработка этого принципиально нового процесса была осуществлена в начале 50-х годов прошлого века сотрудниками ИЭС им. Е.О. Патона АН УССР во главе ...

Скачать
22843
1
1

... , как и нейтральные молекулы движутся хаотически. Если ионы и свободные электроны оказываются во внешнем электрическом поле, то они приходят в направленное движение и создают электрический ток в газах. Таким образом, электрический ток в газе представляет собой направленное движение положительных ионов к катоду, а отрицательных ионов и электронов к аноду. Полный ток в газе складывается из двух ...

Скачать
18378
1
0

... по которым в последующие стадии разряда и устремляются мощные потоки электронов. Причиной возникновения стримеров является не только образование электронных лавин посредством ударной ионизации, но еще и ионизация газа излучением, возникающим в самом разряде (фотоионизация). Наряду со стримерами, распространяющимися от катода к аноду (отрицательные стримеры), существуют также стримеры, движущиеся ...

Скачать
51953
0
0

... прерывистой формой (даже при пользовании источниками постоянного тока). Он возникает в газе обычно при давлениях порядка атмосферного. В естественных природных условиях искровой разряд наблюдается в виде молний. По внешнему искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полосок, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно ...

0 комментариев


Наверх