Содержание
1. ИНДИКАТОРЫ
2. ФИЗИОЛОГИЧЕСКИЕ И ФИЗИЧЕСКИЕ ОСНОВЫ ИНДИКАТОРНОЙ ТЕХНИКИ
2.1 Человеческое зрение
2.2 Восприятие цвета
2.3 Физические эффекты, пригодные для использования в индикаторной технике
3. «ТРИ КИТА» ИНДИКАТОРНОЙ ТЕХНИКИ
3.1 Полупроводниковые индикаторы (ППИ)
3.2 Жидкокристаллические индикаторы (ЖКИ)
3.3 Газоразрядные индикаторы (ГРИ)
4. Применение индикаторов
5. Четыре поколения индикаторных приборов
1. ИНДИКАТОРЫ
Среди систем отображения зрительной информации выделяют устройства коллективного, группового и индивидуального пользования. Типичными примерами этих устройств являются световые табло большого стадиона, экрн телевизора, циферблат электронных наручныч часов. Кроме многих других моментов, эти устройства различаются прежде всего размерами используемых ими индикаторных приборов.
Следуя общей направленности книги, здесь и в дальнейшем будут рассмотрены лишь малогабаритные и ми-ниатюрные индикаторы для устройств индивидуального и отчасти группового пользования, т. е. с расстоянием от индикатора до глаза наблюдателя не более 1-2 м.
2. ФИЗИОЛОГИЧЕСКИЕ И ФИЗИЧЕСКИЕ ОСНОВЫ ИНДИКАТОРНОЙ ТЕХНИКИ
2.1 Человеческое зрение как основной «потребитель» информации, вырабатываемой индикаторными прибора-ми, отличается исключительным своеобразием. Видимая область составляет очень малую часть оптического диапазона длин волн (см. рис. 1.1); чувствительность глаза максимальна в центре этой области и резко спадает к ее краям. Это свойство зрения отражено в функции видности (рис. 3.1), представляющей усредненную спектральную характеристику глаза как фотоприемника. В максимуме спектральной чувствительности (λмах=555 нм) 1 Вт излучения вызывает зрительное ощущение, эквивалентное ощущению от светового потока 680 лм. При других длинах волн величина светового эквивалента излучения меньше (ряд значений ƒλ дан ранее в табл. 1.2); для широкополосного белого света величина ƒλ близка к 360 лм/Вт. Кривая рис. 3.1 довольно условна: в сумерках спектр деформируется так, что λмах сдвигается влево на 50 ... 60 нм; детский глаз воспринимает свет начиная с λ ≈ 315 нм; увеличечие яркости источника раздвигает границы видимости, например концентрированное ИК излучение GaAs-лазера (λ ≈ 860 нм) воспринимается как красное. Несмотря на все это и многочисленные индивидуальные особенности людей, кривая рис. 3.1 гостирована и является основой инженерной фотометрии; именно она служит ориентиром при разработке излучателей и фотоприемников.
Способность глаза приспосабливаться к восприятию резко различных по светимости объектов характеризуется логарифмическим законом Вебера — Фехнера, связывающим физическую яркость источника В с его физиологически ощущаемой яркостью Lфзл =а1nL + b, где а и b — константы. Поэтому динамический диапазон воспринимаемых глазом яркостей исключительно широк и простирается от — 10-7 кд/м2 (в темноте) до — 105 кд/м2 (при яркой внешней засветке); при этом в интервале 10-7 ... 1 кд/м2 работает «сумеречный» механизм зрения и цветового восприятия нет.
УФ -ик
Рис. 3.1. Функция видности человеческого глаза (показаны условные границы различных цветов).
Разные по яркости источники вызывают неодинаковые зрительные ощущения; практически человек разли-чает не более 8 ... 10 градаций яркости (полутонов), поэтому если информация передается изменением яркости индикатора, то нельзя использовать более 4 ... 5 градаций, а для надежной передачи — более двух (черное - белое).
Кроме яркости источника человек оценивает и его пространственные характеристики: разрешающая способ-ность глаза (угловая) близка к 1' (т. е. различение на расстоянии 10 м двух штрихов, разделенных промеягольником в 3 мм). Для быстрого и безошибочного восприятия простого объекта (цифры, буквы и т. п.) надо, чтобы угловые размеры этого объекта были не менее 1о это для оптимальной высоты знака Н дает
Н ≈ (0,5 ... 1)*10-2 Rг-о
где Rг-о — расстояние от глаза до индикатора. Отсюда, например, для индикатора, встроенного в окуляр дальномера (Rг-о ≈5 ... 10 см) допустимо Н≈0,5 мм, для индикатора наручных часов -3 мм, а для крупноформатных дисплеев 10 ... 20 мм. При малой яркости (освещенности) индикатора величина R должна выбираться несколько большей, чөм по (3.1).
Полный угол зрения близок к 120° (по горизонтали) и 90° (по вертикали); обзор для зоны максимального разрешения характеризуется углами 20° и 15°. В соответствии с этим выбирается удлиненный в горизонтальном направлении формат экрана (в телевидении и кино отношение его сторон составляет 4:3).
Кроме яркости и размеров индикатора, решающую роль в его восприятии играет контрастность воспроизво-димого знака. Қоличественно яркостный контраст определяется как К=(L—Lфон)/ L, где L Lфон — яркости источника и фона. Практически для качествеичого восприятия важна не столько величина К, сколько ее пре-вышение над пороговой для данных условий контрастностью Kпор. Для хорошей видимости необходимо, чтобы число пороговых контрастов (К/ Kпор) было не менее 15 ... 30. Зависимость порога зрительного восприятия от угловых размеров, яркости и контрастности наблюдаемых объектов представлена на рис. 3.2. Заштрихованная поверхность соответствует порогу зрительного восприятия: точки, лежащие ниже нее, соответствуют условиям, не вызывающим зрительных ощущений.
Оценка временных характеристик светового сигнала связана с инерционностью зрения: установлено, что при частоте световых посылок более 15 ... 50 Гц глаз перестает ощущать мерцание. При этом действует закон Тальбота: кажущаяся яркость мерцающего источиика равна средней за период наблюдения яркости *. Закон Тальбота служит основой для организации мультиплексных схем управления индикаторами.
Рассмотренные особенности зрения при оценке яркостных, пространственных, временных характеристик световых сигналов фактически и определяют основные требования к индикаторам. К этому еще добавляются особенности ощущения цвета.
2.2 Восприятие цвета является величайшей привилегией человека среди всех представителей животного мира . Лишь цветовая окраска делает окружающий мир столь неповторимым и прекрасным, каким мы его воспринимаем. Нет такого внешнего раздражителя, который был
L,кЗ/мг
1,0 2 5 10 20
Угол зрения, мин
Рис. 3.2. Соотношения между угловыми размерами наблюдаемых
объектов, яркостью и контрастностью для порога зрительного вос-
приятия при времени воздействия 0,3 с.
бы близок к цвету по числу различных градаций: цветовые каталоги включают до 107 различиых оттенков! Естественно поэтому, что для индикаторной техники, стремящейсқ в конечном счете к наиболее полному использованивю возможиостей зрения и к его максимальному удовлетворению, проблема цветности отно-сится к числу основных.
Современное учение о цветге базируется на том экспериментально установленном факте, что «элементар-ные фотоприемники» глазной сетчатки — колбочки содержат рецепторы трех видов, каждый из которых обладает повышенной чувствительностью в красной, зеленой и синей областях спектра. Соответственно этому говорят о трех основных цветах - R, G, B, сочетание которых позволяет синтезнровать всю цветовую гамму. Математически это означает, что цветовое ощущение можно рассматривать как вектор в трехмерном пространстве, осями которого являются R-, G-, B-векторы (принято λr =700 нм, λg —546 нм, λb =436 нм,см рис. 3.1).
Упрощенная цветовая характеристика объекта возможна и в двухмерной форме — точкой на цветовом графике МКО (рис. 3.3). Значение цветовых индексов источника (координат х и у) позволяет найти две его важнейшие характеристики: цветовую тональность, определяемую доминирующей длиной волн излучения (λf для источника F на рис. 3.3); цветовую иасыщенность, определяемую чистотой света (выраженное в процентах отношение отрезков W-F, λf на рис. 3.3).
Опорная точка цветового графика — точка W(х=у=1/3)—соответствует белому свету, для которого характерны отсутствие какой-либо тональности и нулевая чистота цвета. Практически оптимальный белый свет получается из смеси трех цветов с λ=450, 540 и 610 нм. Излучатели, расположенные на огибающей кри-вой цветового графика или вблизи нее (таково большинство светоизлучающих диодов), имеют чистоту све-та, близкую к 100%; для сравнения укажем, что для ламп накаливания она не превышает 10 ... 20%.
Многочисленные психофизические эксперименты показывают, что по наилучшей цветоразличительной спо-собности глаза выделяются шесть основных цветов: белый, черный, красный, желтый, зеленый, синий. По-этому и многоцветные индикаторы, выполняющие функцию отображения информации посредством использования различных цветов, не должны использовать более шести цветов свечения, реально не более 3 ... 5. При сильной внешней засветке белым светом удобны красный, желтый, синий, пурпурный цвета; при слабой засветке к ним могут быть добавлены белый и зеленый. Для индикаторов с элементами малого размера оптимальны белый или желтый цвета. Наиболее контрастные области спектра для красного, желтого, зеленого цветов лежат в диапазоне 610 ... 630 нм, 588 ... ... 598 над и менее 548 нм соответственно.
Для систем отображения нужны как насыщенные контрастные цвета, так и малонасыщенные полутоновые. Как следует из цветового графика (рис. 3.3), для синтеза последних необходимы источники синего излу-чения: смешение чистых цветов из области красный — зеленый дает только насыщенные цвета.
Если, наконец, к сказанному добавить, что значительный процент людей обладает различными врож-денными аномалиями цветового зрения, то становятся понятны трудности создания высоконадежных много-цветных индикаторов.
В заключение отметим, что учение о человеческом зрении намного сложнее любой другой области знаний и сказанное здесь есть лишь самое начальное приближение к действительности. Психофизическое простран-ство цветового восприятия не является линейным, поэтому технически используемые принципы пропорцио-нальности и аддитивности цветовых сигналов не отражают реальность. Повидимому, цветоразличение (и его высокая чувствительность) является не внутренним свойством отдельных колбочек, а результатом совместного действия многих элементов сетчатки, итогом пространственного и временного интегрирования и усреднения.
Можно считать твердо установленным, что для создания совершенной системы цветовоспроизведения по-требуется смешение не трех основных цветов, а по крайней мере десяти - двенадцати. Все это объясняет многочисленные расхождения между рекомендациями и выводами МКО (которые и сами постоянно изменяются) и цветовыми ощущениями различных наблюдателей.
2.3 Физические эффекты, пригодные для использования в индикаторной технике, исключительно разнообразны. Перечислим основные из них, придерживаясь хронологического принципа.
1. Свечение вольфрамовой нити помещенной в вакуум и раскаленной пропусканием через нее электри-ческого тока (накальные индикаторы).
2. Свечение, сопровождающее электрический разряд в газах (газоразрядные индикаторы).
3. Предпробойная электролюминесценция порошковых люминофоров в переменном электрическом поле (злектролюминесцентные индикаторы).
4. Инжекционная люминесценция монокристалличсских полупроводников с p—n переходами (полудроводниковые индикаторы).
5. Излучение фотолюминофоров, нанесенных на полупроводниковые излучатели; возможны два крайних ва-рианта: антистоксовый люминофор на ИК излучателе и «обычный» фотолюминофор на излучателе сине-фиолетового диапазона (пока рипотетическая модель).
6. Электролюминесценция тонких поликристалличөских полупроводниковых пленок в постоянном и перемөнном электрических полях (тонкопленочные электролюминесцентные индикаторы).
7. Низковольтная катодолюминесцөнция (вакуумные люминесцентные индикаторы).
8. Электрооптические эффекты в жидких кристаллах (жидкокристаллические индикаторы).
9. Изменение окраски вещества при пропускании через него электрического тока (электрохромные индика-торы).
10. Электрооптические явления в сегнетоэлектриках, обладающих эффектом двойного лучепреломления (сегнетоэлектрические индикаторы).
11. Гальваническое осаждение и растворение тонкопленочных металлических рисунков (электролитические индикаторы).
12. Перемещение заряженных коллоидных частиц под действием постоянного электрического поля (элек-трофоретические индикаторы).
13. Разнообразные обратимые электро- и фотохимические процессы (электрохимические индикаторы).
14. Измөнение оптических свойств вещества при переходе из жидкой фазы в парообразную при нагрөве электрическим током (парожидкостные индикаторы).
Солоставление этих эффектов позволяет сделать ряд обобщенйй:
— все виды индикаторов можно подразделить на индикаторы с активным и пассивным растрами. К первой группе относятся приборы на основе светогенерациоиных эффектов (1—7), приборы второй группы требуют внешней подоветки (8—14);
— в светогенерационных индикаторах выделяются приборы с прямым (2, 3, 4, 6) и двухступенчатым (1, 5, 7) преобразованием электрической энергии в световую;
- индикаторы с пассивным растром могут быть основаны на измөнении коэффициентов отражения (8, 11, 12, 13. 14), пропускания (8, 12, 13), поглощения (9, 13) света и на вращении плоскоста поляризации (8, 10);
— управлевие индикаторами может осуществляться электрическим током (1, 4, 5, 6, 14), напряжением (2, 3,
6, 7, 8, 10, 12), зарядом (9, 11);
— в качестве активных сред в индикаторах выступают металлы (1, 11), монокристаллы (4, 5), твердые по-ликристаллические вещества (6, 9, 10), порошки (3, 7), жидкости (8, 12), газы (2, 14);
—наиболыпее распространение получили полупроводниковые, газоразрядные и жидкокристаллические ин-дикаторы.
3. «ТРИ КИТА» ИНДИКАТОРНОЙ ТЕХНИКИ
3.1 Полупроводниковые индикаторы (ППИ) примечательны прежде всего тем, что могут перекрыть весь видимый диапазон спектра (рис. 3.4). Яркое и чистое свечение, удобство управлеиия, экономичность, технологичность, долговечность открывают перед этими приборами безграничные перспективы.
Исторически освоение цветовой гаммы идет справа налево: от красного, через оранжевый и желтый к зеле-ному. Это было связано со значительными успехами в области технологии синтеза GaAsP и GaP. Наиболь-шие принципиальные трудности вызывает получение синего света, однако следует заметить, что когда эти трудности будут преодолены, то такой материал, как GaN,
может оказаться одним из самых дешевых, так как выращивается в виде тонких пленок на сапфировых под-ложках. Решение проблемы эффективного синего излучателя откроет путь для создания единой технологии индикаторов всех цветов, основанной на преобразовании этого излучения в более длинноволновое с использовани-ем подходящих фотолюминофоров.
В полупроводниковых индикаторах используются две основные конфигурации высвечиваемых элементов:
— семисегментная (рис. 3.5,а), позволяющая воопроизводить все дөсять цифр и несколько букв (цифровой индикатор);
— матричная (рис. 35,6) с числом точөк 36 (7x5+1), воспроиэводящая все цифры, буквы и знаки стан-дартного кода для обмөна информацией (универсальный цифро-буквенный индикатор).
Для малых по размеру индикаторов используется монолитная конструкция, для больших — в целях экономии дорогостоящих материалов — гибридная, т. е. наборная из отдельных кристаллов. Высокая яркость свечения светодиодоа позволяет использовать различные способы увеличения изображевия. Кроме простейшего линзового увеличения (8 на рис. 1.8,6) достаточно широко используются «псевдосветоводные» конструкции (рис. 3.6). Здесь кристалл помещөн в основании конически расширяющейся прорези в пластмассовой пластине. Иногда внутренние стенки такого световода металлизируют, а сверху помещают пластмассовую линзорастровую пластину, «выравнивающую» яркость свечения по площади прорези. Такая конструкция позволяет получать светящиеся площадки, на порядок превышающие площадь кристалла. Основная масса полупроводниковых индикаторов имеет малые размеры знаков (Н=3 ... 7,5 мм), использование оптического увеличения позволяет продвинуться до Н = 12,5 ... 17,5 мм, в наборных конструкциях реализуют Н = 25 ... 50 мм, что позволяет считывать информацию с расстояния 10 ... 15 м.
Для удобства применения изготавливаются многоразрядные индикаторы (три, четыре, шесть, девять и т. д. знаков в одном корпусе), иногда в тот же корпус помещается и монолитная схема управления (дешифратор-формирователь).
Важной и сложной является задача получения приборов с перестройкой цвета свечения. Простейшее реше-ние — помещение нескольких разных кристаллов в один корпус — для индикаторов не подходит. Могут использоваться (GaP-светодиоды, легированные одновременно азотом, кислородом и цинком, у которых при повышении инжекционного тока последовательно наблюдается красное, желтое, зеленое свечение. Однако цветовая насыщенность таких приборов невысока. Более перспективными представляются структуры с двумя p—n - переходами и с общей базовой областью.
Усложнение светоизлучающего элемента позволяет расширить его функциональные возможности и в схемо-техническом плане. Так, в GaP- структуре типа р+—n—і—n+ фоточувствительная і - область образует внутреннюю положительную обратную связь, поэтому такой светодиод имеет динисторную вольт-амперную характеристику, т. е. обладает «памятью».
Прогресс физики и технологии светоизлучающих диодов позволяет перейти к созданию монолитных много-элементных матриц: вполне достижимо получение 103 ... 104 светящихся точек (т. е. 30 ... 300 знаков) на одном кристалле площадью 1,5 ... 15 см2. Такие матрицы явятся элементарной ячейкой наборного полупроводникового экрана, для технической реализации которого необходимо решение проблем многоуровневой коммутации, отвода тепла, схем управления. При использовании элементов, обладающих памятью и перестройкой цвета, могут быть созданы достаточно экономичные, малогабаритные, многоцветные экраны индивидуального использования с объөмом одновременно отображаемой информа-ции, эквивалентной 0,3—0,5 стр. машинописного текста.
3.2 Жидкокристаллические индикаторы (ЖКИ) относятся к «молодым» и бурно прогрессирующим оптоэлектронным прибором. Жидкокристаллическое состояние вещества характеризуется одновременным сочетанием свойств жидкости (текучесть) и кристалла (оптическая анизотропия). Такое состояние может обнаруживаться в некотором температурном интервале между точкой кристаллизации Тк и точкой превращения вещества в однородную прозрачную жидкость Тж. Имеется несколько структурных разновидностей жидких кристаллов (ЖК); для индикаторных приборов используются нематические ЖК, характеризующиеся следующими основными особенностями:
— молекулы этих веществ имеют сильно вытянутую, нитевидную конфигурацию;
— в равновесном состоянии проявляется тенденция к ориентации больших осей молекул вдоль какого-то преимущественного направления;
— межмолекулярные взаимодействия очень слабы, поэтому структура жидкости (характер ориентации мо-лекул) может легко изменяться под влиянием внешних воздействий;
— имеет место оптическая и электрическая анизотропия: значения показателей преломления и диэлектрической постоянной в направлении вдоль больших осей молекул (n11 и ε
... рода можно рассматривать в качестве своеобразных «критериев истинности». Таким образом, можно заключить, что методические эксперименты имеют важное значение для отбора и дальнейшей стандартизации эмпирических индикаторов. Они весьма трудоемки, требуют значительных финансовых затрат, но часто являются необходимым условием получения качественной социологической информации. Подчеркнем еще раз, что ...
... титрования на ТКТ позволяет сделать заключение о возможности регистрации ТЭ в реальном титровании при аналогичных расчетным концентрациях, а также выбрать индикатор и оценить погрешность титрования с ним. У правильно выбранного индикатора переход окраски должен происходить в интервале изменения свойств титруемого раствора, отвечающего скачку титрования. Индикаторная погрешность титрования может ...
... ≤250 мА (=24 В) Защита данных EEPROM, сегнетоэлектрическая NVRAM Подключение С задней стороны прибора с помощью разъёма–клеммы. Коммуникационные функции Микропроцессорный индикатор ИТМ-20 может обеспечить выполнение коммуникационной функции по интерфейсу RS-485, позволяющей контролировать и модифицировать его параметры при помощи внешнего устройства (компьютера, микропроцессорной ...
... , поглощение излучения в почерневшем поверхностном слое люминофора. Особенно быстро чернеет поверхность люминофора при повышении температуры катода. 3. Устройство, параметры и характеристики. Вакуумные люминесцентные индикаторы выпускаются в цилиндрических и плоских баллонах. Первые бывают так одноразрядными, так и многоразрядными, вторые — только многоразрядными. Основа одноразрядного ВЛИ — ...
0 комментариев