2.2. ФИЗИКА ПРЕОБРАЗОВАНИЯ ЭHEPГИИ В ДИОДНОМ ОПТРОНЕ
Рассмотрение процессов преобразования энергии в оптроне требует учитывать квантовую природу света. Известно, что электромагнитное излучение может быть представлено в виде потока частиц - квантов (фотонов), энергия. каждого из которых определяется соотношением;
ф=h=hc/n (2.1)
где h - постоянная Планка ;
с - скорость света в вакууме ;
n - показатель преломления полупроводника ;
, - частота колебаний и длина волны оптического излучения.
Если плотность потока квантов (т. е. число квантов, пролетающих через единицу площади в единицу вpeмени) равна Nф, то полная удельная мощность излучения составит:
Pф= Nф ф (2.2)
и, как видно из (2.1), при заданном Nф она тем больше, чем короче длина волны излучения. Поскольку на практике заданной бывает Pф (энергетическая облученность фотоприемника), то представляется полезным следующее соотношение
Nф = Pф/ ф=51015 Pф (2.3)
Рис.2.1. Энергетическая диаграмма прямозонного полупроводника (на примере тройного соединения GaAsP).
где Nф, см-2с-1;, мкм; Pф, мВт/см.Механизм инжекционной люминесценции в светодиоде состоит из трех основных процессов: излучательная (и безызлучательная) рекомбинация в полупроводниках, инжекция избыточных неосновных носителей заряда в базу светодиода и вывод излучения из области генерации.
Рекомбинация носителей заряда в полупроводнике определяется прежде всего его зонной диаграммой, наличием и природой примесей и дефектов, степенью нарушения равновесного состояния. Основные материалы оптронных излучателей (GaAs и тройные соединения на его основе GaA1As и GaAsP) относятся к прямозонным полупроводникам т.е. к таким, в которых разрешенными являются прямые оптические переходы зона-зона (рис.2.1.). Каждый акт рекомбинации носителя заряда по этой схеме сопровождается излучением кванта, длина волны которого в соответствии с законом сохранения энергии определяется соотношением
изл[мкм] =1,23/ф[эB] (2.4)
Следует отметить, Что имеются и конкурирующие безызлучательные - механизмы рекомбинации . К числу важнейших из них относятся:
1. Рекомбинация на глубоких центрах. Электрон может переходить в валентную зону не прямо, а через те или иные центры рекомбинации, образующие разрешенные энергетические уровни в запрещенной зоне (уровень Et на рисунке 2.1).
2. Оже-рекомбинация (или ударная). При очень высоких концентрациях свободных носителей заряда в полупроводнике растет вероятность столкновения трех тел, энергия рекомбинирующей электронно-дырочкой пары при этом отдается третьему свободному носителю в форме кинетической энергии, которую он постепенно растрачивает при соударениях с решеткой.
рис.2.2. Электрическая (a) и оптическая (b) модели светодиода.
A - оптически “прозрачная” часть кристалла; B - активная часть кристалла; C -“непрозрачная” часть кристалла; D - омические контакты; E - область объемного заряда.
Относительная роль различных механизмов рекомбинации описывается введением понятия внутреннего квантового выхода излучения int, определяемого отношением вероятности излучательной рекомбинации к полной (излучательной и безызлучательной) вероятности рекомбинации (или, иначе, отношением числа генерированных квантов к числу инжектированных за то же время неосновных носителей заряда). Значение int является важнейшей характеристикой материала, используемого в светодиоде; очевидно, что 0int100%.Создание избыточной концентрации свободных носителей в активной (излучающей) области кристалла светодиода осуществляется путем инжекции их р - n-переходом, смещенным в прямом направлении.
“Полезной” компонентной тока, поддерживающей излучательную рекомбинацию в активной области диода, является ток электронов In (рис.2.2,а), инжектируемых р - n-переходом. К “бесполезным” компонентам прямого тока относятся:
1. Дырочная составляющая Ip, обусловленная инжекцией дырок в n-область и отражающая тот факт, что р - n-переходов с односторонней инжекцией не бывает, Доля этого тока тем меньше чем сильнее легирована n-область по сравнению с р-областью.
2. Ток рекомбинации (безызлучательной) в области объемного заряда р - n-перехода Iрек. В полупроводниках с большой шириной запрещенной зоны при малых прямых смещениях доля этого тока может быть заметной.
3. Туннельный ток Iтун , обусловленный “просачиванием” носителей заряда через потенциальный барьер. Ток переносится основными носителями и вклада в излучательную рекомбинацию не дает. Туннельный ток тем больше, чем уже р - n-переход, он заметен при сильной степени легирования базовой области и при больших прямых смещениях.
4. Ток поверхностных утечек Iпов, обусловленный отличием свойств поверхности полупроводника от свойств объема и наличием тех или иных закорачивающих включений.
Эффективность р - n-перехода характеризуется коэффициентом инжекции:
(2.5)
Очевидно, что пределы возможного изменения те же, что и у int, т. е. 0 100%.
При выводе излучения из области генерации имеют место следующие виды потерь энергии (рис. 2.2,6):
1. Потери на самопоглощение (лучи 1). Если длина волны генерируемых квантов в точности соответствует формуле (2.4), то она совпадает с “красной границей” поглощения (см. ниже), и такое излучение быстро поглощается в толще полупроводника (самопоглощение).В действительности, излучение в прямозонных полупроводниках идет не по приведенной выше идеальной, схеме. Поэтому длина волны генерируемых квантов несколько больше, чем по (2.4):
2. Потери на полное внутреннее отражение (лучи 2).Известно, что при падении лучей света на границу раздела оптически плотной среды (полупроводник) с оптически менее плотной (воздух) для части этих лучей выполняется условие полного внутреннего отражения такие лучи, отразившиеся внутрь кристалла, в конечном счете теряются за счет самопоглощения.
... ). Перспективы развития микроэлектроники Функциональная микроэлектроника. Оптоэлектроника, акустоэлектроника, магнетоэлектроника, биоэлектроника и др. Содержание лекций 1 Цели и задачи курса “Электронные, квантовые приборы и микроэлектроника”. Физика полупроводников. p-n- переходы. Полупроводниковые диоды. Разновидности и характеристики. 2 Транзисторы. Принцип действия, разновидности и ...
... интегральным микросхемам. Они позволяют выполнять логическую обработку большого числа сигналов, воспроизводить сложные функции усиления, генерации и преобразования электрических сигналов. Тиристор – электропреобразовательный полупроводниковый прибор, содержащий три или более р-п-перехода. По числу внешних электродов тиристоры делятся на: двухэлектродные – динисторы и трехэлектродные – тринисторы. ...
дания высокоэффективных средств отображения информации. Очень важным преимуществом элементов оптоэлектроники является то, что они оптически связаны, а электрически изолированы между собой. Это обеспечивает надежное согласование различных оптоэлектронных цепей, способствует однонаправленности передачи информации, помехоустойчивости каналов передачи сигналов. Изготовление полупроводниковых ...
... на определенной длине, а впоследствии расходящихся волноводов, что существенно для создания направленных ответвителей и частотно-избирательных фильтров в системах интегральной оптики. Рис 7. Оптический полосковый микроволновод с прямоугольным поперечным сечением: 1 – подложка; 2 – диэлектрическая пленка. Оптоэлектронные микросхемы. На основе оптоэлектроники разработано большое числ
0 комментариев