Государственная академия сферы быта и услуг

Уфимский технологический институт сервиса

Кафедра физики

Контрольная работа по предмету:
«Концепция современного естествознания»
на тему: «Парадокс близнецов»

Содержание

Введение.

1.   Постулаты специальной теории относительности Энштейна.

2.   Преобразования Лоренца в подвижной и неподвижных системах.

3.   Следствия из преобразований теории относительности: изменение длины и времени.

4.   Границы применимости законов классической механики.

5.   Список используемой литературы.

Заключение.

Введение

«Концепции современного естествознания» — новый предмет в сис­теме высшего образования. Насколько нужно знать современную на­уку человеку, который, скорее всего, никогда сам не будет работать в ней?» В наши дни ни один человек не может считаться образован­ным, если он не проявляет интереса к естественным наукам. Обыч­ное возражение, согласно которому интерес к изучению электриче­ства или стратиграфии мало что дает для познания человеческих дел, только выдает полное непонимание человеческих дел.

Наука — это не только совокупность знаний. «... Науке можно учить как увлекательнейшей части человеческой истории — как бы­стро развивающемуся росту смелых гипотез, контролируемых экс­периментом и критикой.

Итак, для чего же нужно изучать современное естествозна­ние?

Во-первых, для того, чтобы стать культурным человеком, надо знать, что такое теория относительности, генетика, синергетика, социобиология, экология, этология и другие науки.

Во-вторых, это важно и потому, что многое в нашей жизни строится в соответствии с научной методологией. Хотя человечеству далеко до научной орга­низации труда, тем не менее, научные принципы функционируют во многих видах деятельности, и, чтобы их успешно применять, надо их знать.

 В-третьих, потому, что знания, необходимые любому специа­листу, так или иначе связаны и в какой-то степени основаны на науч­ных данных. Этих причин достаточно для обоснования важности но­вого курса.

 

 

 

 

 

 

 

1.Специальная теория относительности Энштейна.

Название “теория относительности” возникло из наименования основного принципа (постулата), положенного Пуанкаре и Эйнштейном в основу из всех теоретических построений новой теории пространства и времени.

Специальная теория относительности, созданная в 1905 г. А. Эйнштейном, стала результатом обобщения и синте­за классической механики Галилея— Ньютона и электродина­мики Максвелла—Лоренца. "Она описывает законы всех физи­ческих процессов при скоростях движения, близких к скорости света, но без учета поля тяготения. При уменьшении скоростей движения она сводится к классической механике, которая, та­ким образом, оказывается ее частным случаем".[ГАсГ1]

Специальная теория относительности называется иначе релятивистской теорией . В основу ее положены два принципа, которые являются постулатами. Эти постулаты надежно подтверждены экспериментально.

1.   Принцип относительности. Все инерциальные системы отсчета равноправны, во всех инерциальных системах не только механические, но и все другие явления природы протекают одинаково.

2.   Принцип постоянства скорости света. Во всех инерциальных системах скорость света в вакууме одинакова и равна с.

Из двух основных постулатов теории относительности вытекает, что два события, одновременные в одной системе отсчета, не одновременны в другой системе. Понятие одновременности имеет относительный смысл, и в разных инерциальных системах отсчета время протекает по-разному.

Содержанием теории относительности является физическая теория пространства и времени, учитывающая существующую между ними взаимосвязь геометрического характера.

Название же “принцип относительности” или “постулат относительности”, возникло как отрицание представления об абсолютной неподвижной системе отсчета, связанной с неподвижным эфиром, вводившимся для объяснения оптических и электродинамических явлений.

Эйнштейн пишет: “.. неудавшиеся попытки обнаружить движение Земли относительно “светоносной среды” ведут к предположению, что не только в механике, но и в электродинамике никакие свойства явлений не соответствуют понятию абсолютного покоя, и даже более того,- к предположению, что для всех координатных систем, для которых справедливы уравнения механики, имеют место те же самые электродинамические и оптические законы, как это уже доказано для величин первого порядка. Мы намерены это положение (содержание которого в дальнейшем будет называться “принципом относительности”) превратить в предпосылку... “[1] А вот что пишет Пуанкаре: “Эта невозможность показать опытным путем абсолютное движение Земли представляет закон природы; мы приходим к тому, чтобы принять этот закон, который мы назовем постулатом относительности, и примем его без оговорок.”

Преобразования Лоренца, отражающие свойства пространства-времени, были выведены Эйнштейном, исходя из 2 постулатов: принципа относительности и принципа постоянства скорости света.

1. Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, находящихся относительно друг друга в равномерном поступательном движении, эти изменения состояния относятся.

2. Каждый луч света движется в “покоящейся” системе координат с определенной скоростью , независимо от того, испускается ли этот луч света покоящимся или движущимся телом.

Значение этих постулатов для дальнейшего развития теории пространства-времени состояло в том, что их принятие прежде всего означало отказ от старых представлений о пространстве и времени, как о многообразиях, не связанных органически друг с другом.

Принцип относительности сам по себе не представлял чего-либо абсолютно нового, т.к. он содержался и в Ньютоновской физике, построенной на базе классической механики. Принцип постоянства скорости света также не был чем-то абсолютно неприемлемым с точки зрения ньютоновских представлений о пространстве и времени.

Однако эти два принципа, взятые вместе привели к противоречию с конкретными представлениями о пространстве и времени, связанные с механикой Ньютона. Это противоречие можно проиллюстрировать следующим парадоксом.

Пусть в системе отсчета  в начальный момент  в точке, совпадающей с началом координат произошла вспышка света. В последующий момент времени фронт световой волны, в силу закона постоянства скорости света, распространился до сферы радиуса  с центром в начале координат системы . Однако в соответствии с постулатами Эйнштейна, это же явление мы можем рассмотреть и точки зрения системы отсчета  , движущейся равномерно и прямолинейно вдоль оси , так, что ее начало координат и направления всех осей совпадали в момент времени  с началом координат и направлениями осей первоначальной системы . В этой движущейся системе, соответственно постулатам Эйнштейна, за время  свет также распространится до сферы радиуса

, однако, в отличие о предыдущей сферы должен лежать в начале координат системы , а не . Несовпадение этих сфер, т.е. одного и того же физического явления, представляется чем-то совершенно парадоксальным и неприемлемым с точки зрения существующих представлений. Кажется, что для разрешения парадокса надо отказаться от принципа относительности, либо от принципа постоянства скорости света. Теория относительности предлагает, однако, совершенно иное разрешение парадокса, состоящее в том, что события, одновременные в одной системе отсчета , неодновременные в другой, движущейся системе , и наоборот. Тогда одновременные события, состоящие в достижении световым фронтом сферы, определяемой уравнением , не являются одновременными с точки зрения системы , где одновременны другие события, состоящие в достижении тем же световым фронтом точек сферы, определяемой уравнением

Таким образом, одновременность пространственно разобщенных событий перестает быть чем-то абсолютным, как это принято считать в повседневном макроскопическом опыте, а становится зависящей от выбора системы отсчета и расстояния между точками, в которых происходит события. Эта относительность одновременности пространственно разобщенных событий свидетельствует о том, что пространство и время тесно связаны друг с другом, т.к. при переходе о одной системе отсчета к другой, физически эквивалентной, промежутки времени между событиями становятся зависящими от расстояний (нулевой промежуток становится конечным и наоборот).

Итак, постулаты Эйнштейна помогли нам прийти к новому фундаментальному положению в физической теории пространства и времени, положению о тесной взаимосвязи пространства и времени и об их нераздельности, в этом и состоит главное значение постулатов Эйнштейна.

Основное содержание теории относительности играет постулат о постоянстве скорости света. Основным аргументов в пользу этого является та роль, которую отводил Эйнштейн световым сигналам, с помощью которых устанавливается одновременность пространственно разобщенных событий. Световой сигнал, распространяющийся всегда только со скоростью света, приравнивается, таким образом, к некоторому инструменту, устанавливающему связь между временными отношениями в различных системах отсчета, без которого якобы понятия одновременности разобщенных событий и времени теряют смысл.

Теория относительности, созданная Эйнштейном в 1905 г., стала закон­ченной теорией движения макроскопических тел. Её применение в теории эле­ментарных частиц наталкивается на ряд серьезных трудностей, которые, быть может, свидетельствуют о необходимости нового понимания принципа относи­тельности. Развитие атомной и особенно ядерной физики - блестящий триумф теории Эйнштейна - указывает вместе с тем на возможное дальнейшее развитие и обобщение этой теории.

Теория относительности ждет дальнейшего развития и обобщения и в другом направлении, помимо картины движений, взаимодействий и трансмута­ций элементарных частиц в областях порядка 10-13 см, Она все в большей сте­пени становится теорией, описывающей строение космических областей, по сравнению с которыми исчезающи малы расстояния между звездами и даже расстояния между галактиками.

2. Преобразования Лоренца в подвижной и неподвижных системах.

В соответствии с двумя постулатами специальной теории относительности между координатами и временем в двух инерциальных системах К и К' существуют отношения, которые называются преобразованиями Лоренца.

Для вывода преобразований Лоренца будем опираться лишь на “естественные” допущения о свойствах пространства и времени, содержавшиеся еще в классической физике, опиравшейся на общие представления, связанные с классической механикой:

1. Изотропность пространства, т.е. все пространственные направления равноправны.

2. Однородность пространства и времени, т.е. независимость свойств пространства и времени от выбора начальных точек отсчета (начала координат и начала отсчета времени).

3. Принцип относительности, т.е. полная равноправность всех инерциальных систем отсчета.

Различные системы отсчета по-разному изображают одно и то же пространство и время как всеобщие формы существования материи. Каждое из этих изображений обладает одинаковыми свойствами. Следовательно, формулы преобразования, выражающие связь между координатами и временем в одной - “неподвижной” системе  с координатами и временем в другой - “движущейся” системе , не могут быть произвольными.

Наша задача в точной формулировке сводится к следующему. Каковы значения х', у', z',t' некоторого события относительно системы К', если заданы значения х, у, z, t того же события относительно системы К? Со­отношения должны быть выбраны так, чтобы для одного и того же све­тового луча (причем для любого) относительно К и К' выполнялся закон распространения света в пустоте. Эта задача пространственного расположения систем координат решается следующи­ми уравнениями:

z'=z


Эта система уравнений носит название «преобразования Лоренца». Но если бы вместо закона распространения света мы молчаливо исхо­дили из представлений старой механики об абсолютном характере вре­мени и протяженности, то вместо этих уравнений преобразования мы получили бы уравнения

x'= x - vt,

y' = y,

z' = z,

t' = t.

Последнюю систему уравнений часто называют «преобразованием Галилея». Преобразо­вание Галилея выводится из преобразования Лоренца, если в последнем скорость света с положить равной бесконечно большому значению.

В классической механике пространство и время рассматриваются как понятия независимые друг от друга. Из преобразований Лоренца вытекает тесная связь между пространственными и временными координатами: не только пространственные координаты зависят от времени, но и время зависит от пространственных координат, а также от скорости движения системы отсчета.

Преобразования Лоренца и релятивистский закон сложения скоростей соответствуют принципу инерции. Действительно, если тело движется равномерно и прямолинейно относительно одной инерциальной системы отсчета , то оно будет двигаться прямолинейно и равномерно относительно любой другой инерциальной системы.

Таким образом, преобразования Лоренца выражают общие свойства пространства и времени для любых физических процессов. Эти преобразования, как это выяснилось в процессе доказательства, составляют непрерывную группу, называемую группой Лоренца. В этом факте, в наиболее общем виде отображаются свойства пространства и времени, раскрытые теорией относительности.

 

 

3.Следствия из преобразований теории относительности: изменение длины и времени.

Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в со­временной физике и других науках. Физические, химические и дру­гие величины непосредственно или опосредованно связаны с измере­нием длин и длительностей, т.е. пространственно-временных ха­рактеристик объектов. Поэтому расширение и углубление знаний о мире связано с соответствующими учениями о пространстве и времени.

При переходе к космическим масштабам геометрия простран­ства перестает быть евклидовой и изменяется от одной области к другой в зависимости от плотности масс в этих областях и их движе­ния. В масштабах метагалактики геометрия пространства изменяет­ся со временем вследствие расширения метагалактики. При скоро­стях, приближающихся к скорости света, при сильном поле прост­ранство приходит в сингулярное состояние, т. е. сжимается в точку.

Теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Время и прост­ранство перестали рассматриваться независимо друг от друга и воз­никло представление о пространственно-временном четырехмер­ном континууме.

Дальнейшее изложение проведем на несколько ином языке.

Введем представление о некотором «условном» человеке, пред­положив, что можно говорить о его возрасте как о некотором возрастающем во времени параметре, однозначно определяющем состояние его организма. В соответствии с этим будем, следова­тельно, предполагать, что и длительность его жизни имеет вполне определенное значение, т. е. что, «рождаясь» в определенный мо­мент времени (записанный в его паспорте), этот условный человек и «умирает» также по истечении всегда вполне определенного времени, т. е. что время жизни дано не как некоторая средняя величина, характеризующая лишь статистически множество лю­дей, живущих в определенных условиях, но что это время жизни имеет вполне определенное, одно и то же в каждом отдельном индивидуальном случае значение.

В популярном изложении основ своей теории относительности Эйнштейн, а следуя ему, и другие авторы часто прибегали к срав­нению движущейся системы отсчета с поездом, пассажиры кото­рого производят различные измерения, пользуясь часами и эталонами длины (масштабами), тождественными с такими же измерительными приборами, которые имеются в распоряжении наблю­дателей, находящихся на станциях, неподвижных относительно железнодорожного полотна, по которому движется поезд.

Если оторваться от обстановки наблюдений в земных условиях и учесть возможности современной космической связи, то, говоря о соотношениях Лоренца, может быть, и целесообразно, кон­кретизируя обстановку различных примеров, представлять себе какие-то объекты, населенные людьми, несущиеся в космическом пространстве так, что движение их характеризуется космиче­скими масштабами.

Словом, перенесем «поезд» Эйнштейна, движущийся со суб­световой скоростью, с его пассажирами в космическое пространство.

В приводимых далее сравнениях будем представлять себе две «мира», вполне тождественные по совокупности образующих их тел и пространственно-временных соотношений (внутри каждого из них). Один из этих миров несется в космическом пространст­ве с постоянной скоростью р порядка скорости света относительно другого. Между обитателями этих «миров» поддерживается связь так, что любые события в одном из этих миров могут быть зареги­стрированы в другом с указанием соответствующих координат пространства и времени. Обозначим эти «миры» — эти системы отсчета—римскими цифрами I и II.

Будем говорить о двух партнерах А и В. Положим, что они родились одновременно в системе I, в которой они ровесники, поэтому в паспортах каждого из них, выданных «с точки зрения» этой системы, даты их рождения и обозначены соответственно, т. е. эти даты совпадают. Предположим, однако, что А и В на­ходятся на значительном расстоянии друг от друга.

Допустим, что в какой-то определенный (один и тот же в сис­теме I для обоих ровесников) момент времени оба они — А и В, получив соответствующие мгновенные ускорения, перебрасыва­ются из системы I в систему II так, что при этом они останавли­ваются относительно системы II. После этого они оказываются покоящимися в этой последней системе II (и несутся вместе с ней со субсветовой скоростью относительно первоначальной системы — системы I).

Положим затем, что один из них, например А, станет очень медленно перемещаться (в системе II) в направлении к другому. Потребуем, чтобы скорость и перемещения А была настолько ма­ла, что условие было бы выполнено.

Положим, что А — тот из партнеров, который был перебро­шен на расстоянии х' (в системе II) в точке, расположенной от­носительно В в направлении, противоположном направлению движения (системы II относительно системы I).

Тогда, после того как А, двигаясь в соответствии с условием очень медленно в направлении к В, достигнет .В, обнаружит­ся, что он моложе В и именно настолько моложе, что разность их возрастов окажется равной2 х'6а/с, что следует из уравнения Лоренца.

Если речь идет о «паспортах», в которых записаны даты рож­дения обоих (т. е. А и В) так, как они были зарегистрированы по данным системы II, то никакого согласования и не потребуется, так как разность возрастов А и В, встретившихся в определенном месте в_ системе II, будет соответствовать тем датам рождения, которые указаны в их паспортах. Согласно этим паспортам (сис­темы II) они родились в разное время (А позже на х' ро/с сек., чем В) и, следовательно, они и не являются ровесниками 3.

Вместе с тем наблюдатель, неподвижный в системе I, следив­ший за перемещениями А и В в системе II и их старением, в сво­их суждениях будет основываться на том, что записи в паспор­тах А и В, определяющие даты их рождения, правильны. Он бу­дет исходить из того, что в момент «переброски» из системы I в систему II А и В были и остались ровесниками.

При указанных условиях возраст и является мерой времени — собственного времени—данного объекта, и терминологически мож­но говорить одинаково или о возрасте определенного индивиду­ума, или о показании идеальных часов, остающихся всегда не­подвижными относительно него.

На вопрос об одновременности или неоднвременности двух событий нельзя ответить, не указав систему отсчета, относительно которой данная задача решается. Понятие одновременности имеет относительный смысл, и события, одновременные в одной системе отсчета, окажутся неодновременными в другой системе.

Итак, в теории относительности промежутки времени между событиями и длины отрезков являются относительными понятиями, имеющими различные значения в разных инерциальных системах отсчета.


Информация о работе «Парадокс близнецов»
Раздел: Физика
Количество знаков с пробелами: 27989
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
21159
0
0

... время жизни мюона, согласно преобразований Лоренца, должно быть тем больше, чем больше его скорость. Эксперимент подтвердил данный вывод. Как видно из краткого анализа многими авторами рассматривался “парадокс близнецов” и большинство из них придерживаются выводов А. Эйнштейна по этому вопросу, в той или иной форме видоизменяя его. Поэтому в данной статье рассмотрены некоторые вопросы, по теории ...

Скачать
11093
0
1

... об уменьшении суммарного времени, истекшего на первом объекте с момента разлуки до момента его встречи с находящимся на этом объекте близнецом-домоседом. Это и является физической сущностью мнимого парадокса близнецов. Результаты непосредственных наблюдений С учетом перепада координатного времени полное стандартное (путиподобное собственное) время первого объекта, наблюдаемое близнецом- ...

Скачать
62331
0
3

... . Что касается «сжатия» окружности диска и нарастающего во времени «смещения» друг относительно друга смежных кольцевых слоев диска, то их принципиально не может существовать. У интерпретаторов парадокса Эренфеста не все в порядке со «здравым смыслом». Преобразование Лоренца нельзя применять формально (догматически), не сообразуясь с физикой анализируемых процессов (со здравым смыслом). 6.   ...

Скачать
69041
0
0

... и парадоксы, существующие в других науках (физические, математические). Несмотря на явное упрощение, именно такое разделение представляется наиболее подходящим и оправданным целями данной работы. 2. Парадоксы в науке   Наука – это сложное явление общественной жизни; её основным назначением является получение объективных знаний о мире. Наука – это многоаспектное явление. Её можно рассматривать ...

0 комментариев


Наверх