3.5. Расчет углового распределения

потока энергии от системы источников


3.5.1. Непрерывное распределение источников


X


b


dx

0

DL q

В случае возбуждения волн на поверхности воды такое расположение точечных источников, колебания которых происходят в фазе, обеспечивается вертикальными колебаниями параллельного поверхности воды стержня. Рассмотрим излучение, вызванное колебаниями стержня конечной длины, равной b.

Положение точечного источника определяется его координатой x, амплитуда колебаний пропорциональна dx. Чтобы найти амплитуду колебаний в удаленной от стержня области наблюдения необходимо провести сложение колебаний от всех источников (интегрирование по отрезку 0b):





.


У нас получилось довольно громоздкое “многоэтажное” выражение, в смысле которого нам надо разобраться. Во-первых, из этого выражения видно, что, как и должно было быть, в некоторой области (точке) наблюдения происходят колебания с частотой w и некоторой начальной фазой. В выражение для амплитуды этих колебаний входит множитель x0. В принципе, он может быть выражен через амплитуду колебаний вблизи стержня с помощью закона сохранения энергии. Но он не представляет для нас особого интереса, как и начальная фаза колебаний. Нужное же нам угловое распределение потока энергии определяется множителем


.



0 q 0 q 0 q



В числителе этого выражения стоит синус знаменателя. Поэтому, если знаменатель обращается в нуль при q = 0, будет A = 1. При изменении q в пределах ±p/2 величина периодически принимает нулевое значение и затем достигает максимумов. Величина модуля A в максимуме по мере увеличении модуля q уменьшается, поскольку синус от некоторой величины изменяется медленнее, чем сама эта величина. Вид зависимости при разных отношениях b/l представлен на рисунке.


3.5.2. Излучение пары точечных источников


Ранее мы рассматривали суммарные колебания от системы точечных источников в некоторой достаточно удаленной области наблюдения. При этом мы не определяли, по сравнению с чем это удаление велико. Собственно, рассматривая параллельные лучи, мы неявно считали, что область наблюдения находится на бесконечности.

Рассмотрим теперь колебания от уединенного источника в точках плоскости, отстоящей от него на большое, но конечное расстояние l. При этом мы ограничимся небольшим по сравнению с l смещением точки наблюдения от точки падения перпендикуляра, проведенного от источника волн S к плоскости, при малых значениях x.

X


l x

S q DL

xS

l q/2


Проведем от источника волн отрезок прямой в точку наблюдения с координатой x и перпендикуляр к оси координат. Величина xS - это x-координата источника. Мы получили прямоугольный треугольник. Отложим от точки расположения источника вдоль гипотенузы треугольника отрезок длиной l и соединим конец этого отрезка с точкой xS, точкой падения перпендикуляра. Угол при вершине построенного таким образом равнобедренного треугольника , а основание составляет с осью 0X угол q/2. Таким образом, разность хода лучей

.


Соответственно, разность фаз колебаний в этих точках


.


В этом выражении - разность x-координат точки наблюдения и источника волн.

X


x

S’

d 0

S”


Полученное выражение является для нас вспомогательным. Применим его для решения задачи об амплитуде колебаний, созданных двумя точечными источниками, расположенными на расстоянии d друг от друга и на расстоянии l от плоскости наблюдения.

Разность фаз колебаний, созданных нашими источниками в точке x,


.


В круглых скобках записаны разности x-координат точки наблюдения и источников волн. После возведения в квадрат мы получаем:


Dj


x

x0


.


Произведем сложение этих колебаний с помощью векторной диаграммы. Фаза результирующих колебаний нас не интересует, а амплитуда



принимает максимальные значения 2x0 в точках, отстоящих друг от друга на


(при изменении аргумента косинуса на p). Центральный максимум наблюдается при x = 0.



Информация о работе «Физика 9-10 класс»
Раздел: Физика
Количество знаков с пробелами: 60852
Количество таблиц: 0
Количество изображений: 21

Похожие работы

Скачать
40220
1
0

... основ и ясно поставленных целей, обучение зачастую сводится к передаче знаний посредством бессистемных методов и приемов. Перестройка школы, совершенствование учебно-воспитательного процесса требуют от учителя особое внимание уделять развитию критического мышления учащихся. [3]   1.3 Физика как основа для развития критического мышления   Безусловно, этот процесс должен быть комплексным, т.е. ...

Скачать
71700
0
0

... приборы (рычажные весы, электроскоп и др.); -работы, выполняемые на приборах, выпускаемых промышленностью. Классификация взята из [1]. В своей книге [2] С.Ф. Покровский показал, что домашние опыты и наблюдения по физике, проводимые самими учащимися: 1)дают возможность нашей школе расширить область связи теории с практикой; 2)развивают у учащихся интерес к физике и технике; 3)будят ...

Скачать
71323
3
0

... пользователя: VI—XI классы. Платформа: Windows. Носитель: компакт-диск. Варианты построения уроков с использованием электронного учебника   1.         Электронный учебник используется при изучении нового материала и его закреплении (20 мин. работы за компьютером). Учащихся сначала опрашивают по традиционной методике или с помощью печатных текстов. При переходе к изучению нового материала ...

Скачать
40136
0
23

... значениями этих параметров, чтобы определить предельные значения и шаг расчёта рассчитываемых параметров. Заключение Хочется выразить уверенность, что в следующих версиях курса "Открытая физика" количество компьютерных моделей будет расти, их функциональные возможности станут разнообразнее, а пределы изменения числовых значений параметров, описывающих эксперименты, будут расширены. Надеемся, что ...

0 комментариев


Наверх