1. Фотон.
2. Легкие частицы (лептоны) с массой, меньшей массы -мезона (нейтрино двух типов, электрон, мюон). Все лептоны являются фермионами, т. е. имеют спин Ѕ и подчиняются статистике Ферми — Дирака.
3. Мезоны и мезонные резонансы, к которым относятся -мезоны и более массивные частицы с целочисленным спином. Все они являются бозонами, т. е. подчиняются статистике Бозе — Эйнштейна.
4. Барионы и барионные резонансы . К ним относятся нуклоны и более массивные частицы. Все они являются фермионами и имеют полуцелый спин.
После открытия позитрона, являющегося античастицей по отношению к электрону, возник вопрос: существуют ли античастицы у всех «элементарных» частиц?
Представление, что нейтрино имеет античастицу — антинейтрино, возникло почти одновременно с первыми попытками дать теоретическое объяснение электронного и позитронного распада (бета-распада ядер); однако только последние исследования двойного бета-распада дали право утвердительно ответить на этот вопрос.
В 1955 г. был открыт антипротон, а в 1956 г. было установлено, что столкновения антипротона с протоном могут привести либо к их аннигиляции, либо к превращению антипротона в антинейтрон в результате обменного эффекта. Таким образом, протон р и нейтрон n имеют античастицы: антипротон и антинейтрон .
В связи с существованием античастиц у нейтрино и нейтрона возникает вопрос: чем отличается незаряженная частица от своей античастицы? Можно предположить, что отличие проявляется в знаке магнитного момента. Однако это не всегда правильно. Магнитный момент антинейтрона действительно должен быть противоположен по знаку магнитному моменту нейтрона; но этот критерий неприменим по отношению к нейтрино, магнитный момент которого равен, по-видимому, нулю. Значит, различие между частицами и античастицами связано с каким-то иным свойством незаряженных частиц, изменяющимся при переходе к их античастицам.
Это свойство может быть установлено, если предположить, что все барионы характеризуются специфическим барионным зарядом A. Он равен +1 для барионов и —1 для антибарионов. Для барионного числа (заряда) выбрано обозначение, совпадающее с обозначением массового числа, поскольку массовое число — это фактически барионное число ядра, состоящего из А протонов и нейтронов. Таким образом, можно считать, что основным отличием протона и нейтрона от соответствующих им античастиц является отличие в знаке барионного заряда, но не в знаке электрического заряда или магнитного момента. Соответственно лептоны и антилептоны отличаются противоположными знаками лептонного заряда (числа), по модулю равного единице . Для мезонов барионный и лептонный, заряды равны нулю.
Cведения о частицах, античастицах и их взаимных, превращениях значительно расширились за последние годы в результате открытия и интенсивного изучения мезонов, барионов и их резонансов. За последнее время появился ряд работ , в которых делаются попытки классифицировать наблюдаемые факты и явления в рамках феноменологической теории..
ГеллМанн обратил внимание на существование следующих типов взаимодействия между элементарными частицами: (если не учитывать гравитации):
1. Сильные взаимодействия, возникающие между барионами, антибарионами и мезонами. Этими взаимодействиями обусловлены ядерные силы между нуклонами и процессы образования мезонов и гиперонов при ядерных столкновениях. Однако учет одних лишь сильных взаимодействий следует рассматривать как первое приближение.
2. Электромагнитные взаимодействия, возникающие при воздействии фотонов на заряженные частицы (второе приближение).
3. Слабые взаимодействия, проявляющиеся при и -распадах и обусловливающие, кроме того, медленные распады гиперонов и мезонов (третье приближение).
В этой теории нуклоны, антинуклоны и -мезоны считаются обычными частицами, в отличие от «странных» частиц, к которым отнесены К-мезоны и гипероны. Свойства обычных частиц изучены лучше свойств странных частиц, поэтому мы сначала ограничимся рассмотрением процессов, происходящих с учетом первых.
При учете только сильного взаимодействия справедлив закон сохранения изотопического спина: каждой частице или системе частиц соответствует изотопический спин, являющийся точным квантовым числом. Состоянию с изотопическим спином Т отвечает кратность вырождения 2Т+1, причем каждая компонента такого мультиплета соответствует определенному зарядовому состоянию частицы или системы частиц. Как обычно, будем считать, что заряд возрастает с увеличением Т. Центры мультиплетов, т. е. средние заряды, различны для разных мультиплетов. Для нуклонного дублета средний заряд (полусумма зарядов протона и нейтрона) равен +1/2. Для антинуклонного дублета —1/2, а для -мезонного триплета он равен нулю.
Заряд Z системы частиц определяется соотношением
,
Центр мультиплета, соответствующего такой системе, равен А/2. Преобразование зарядового сопряжения меняет знаки Z, T и А.
При учете электромагнитного взаимодействия изотопический спин теряет свойства точного квантового числа и вырождение по изотопическому спину снимается. Так возникает различие между массами частиц, находящихся в разных зарядовых состояниях.
Процессы, в которых проявляются только сильные взаимодействия, называются быстрыми. К ним относятся процессы, происходящие при столкновении нуклонов с большой энергией, например образование -мезонов, распад резонансных состояний, образующихся при рассеянии мезонов барионами, и т. д. Эти процессы протекают за промежутки времени порядка 10-22 сек.
Процессы, обусловленные электромагнитным взаимодействием, называют электромагнитными. К ним относится, например, распад °-мезона на два -кванта. Характерное время электромагнитных процессов – порядка 10— 10 сек.
Наконец, процессы, идущие под влиянием только слабых взаимодействий, например лептонный распад, и требующие «больших» промежутков времени (~10 сек), называются медленными.
ЛитератураВ.В Маляров «Основы теории атомного ядра» Издательство «Наука», М. 1967г.
И.В. Савельев «курс общей физики» том 3. Издательство «Наука», М. 1982 г.
И.В Корсунский «Атомное ядро». Издательство «Наука», М, 1968г
- 28 -
Министерство образования Российской Федерации
Московский Государственный Областной Педагогический Институт
Курсовая работа по физике на тему: «Ядерные силы»
Выполнил: студент 4 курса, группы 4-ф-1, физико-математического факультета
Удачин Андрей Анатольевич
Преподаватель: Гусев В.Н.
2004 г.
... устаревания существующих систем и крайне ограниченного внедрения новых вооружений. Ориентация на "минимальное сдерживание" доктринально закрепляет растущее количественное и качественное отставание РФ от США и их союзников по ядерным силам. На основе таких СЯС "расширенное сдерживание" совершенно некредитоспособно. Ведь "в критической ситуации" первый ядерный удар РФ с использованием ТЯО скорее ...
... электроны в бозе-состоянии, в том числе в виде «куперовских» пар. Таким образом, оболочечная структура ядра объясняется присутствием в нем электронов. Керн атомного ядра состоит из протонных кластеров, ассемблированных электронными оболочками. Объясняется природа ядерных сил и причина их близкодействия. Собственно ядерные силы имеют контактную природу и являются частным случаем гравитационного ...
... . При восстановлении КЭС необходимо заменить поврежденные элементы. 4. ОЦЕНКА УСТОЙЧИВОСТИ ОБЪЕКТА (ЦЕХА) К ВОЗДЕЙСТВИЮ СВЕТОВОГО ИЗЛУЧЕНИЯ Оценка устойчивости ОНХ к световому излучению заключается в определении пожарной обстановки на объекте народного хозяйства. Предел устойчивости - это минимальный световой импульс, при котором воспламеняются здания, сооружения, материалы объекта и ...
... лучшие умы того времени не только США и Англии, но практически всей Западной Европы. Над созданием ядерного оружия трудился огромный коллектив, включая 12 лауреатов Нобелевской премии. Работа в Лос-Аламосе, где находилась лаборатория, не прекращалась ни на минуту. В Европе тем временем шла Вторая мировая война, и Германия проводила массовые бомбардировки городов Англии, что подвергало опасности ...
0 комментариев