1. Введение. Предмет изучения в валеологии.
1.1 Введение.
Валеология – от лат. «valeo»-«здравствую» - научная дисциплина, изучающая индивидуальное здоровье здорового человека. Принципиальное отличие валеологии от других дисциплин (в частности, от практической медицины) состоит именно в индивидуальном подходе к оценке здоровья каждого конкретного субъекта (без учета общих и усредненных по какому-либо коллективу данных).
Впервые валеология как научная дисциплина была официально зарегистрирована в 1980 году. Её основоположником стал российский ученый И. И. Брехман, работавший во Владивостокском Государственном Университете.
В настоящее время новая дисциплина активно развивается, накапливаются научные работы, активно ведутся практические исследования. Постепенно происходит переход от статуса научной дисциплины к статусу самостоятельной науки.
1.2 Предмет изучения в валеологии.
Предметом изучения в валеологии является индивидуальное здоровье здорового человека и влияющие на него факторы. Также валеология занимается систематизацией здорового образа жизнис учетом индивидуальности конкретного субъекта.
Наиболее распространённым на данный момент определением понятия «здоровье»является определение, предложенное экспертами Всемирной Организации Здравоохранения (ВОЗ):
Здоровье есть состояние физического, психического и социального благополучия.
Современная валеология выделяет следующие основные характеристики индивидуального здоровья:
1. Жизнь – наиболее сложное проявление существования материи, которое превосходит по сложности различные физико-химические и био- реакции.
2. Гомеостаз – квазистатичное состояние жизненных форм, характеризующееся изменчивостью на относительно больших временных отрезках и практической статичностью – на малых.
3. Адаптация – свойство жизненных форм приспосабливаться к изменяющимся условиям существования и перегрузкам. При нарушениях адаптации или слишком резких и радикальных изменениях условий возникает дезадаптация – стресс.
4. Фенотип – сочетание факторов окружающей среды, влияющих на развитие живого организма. Также термин «фенотип» характеризует совокупность особенностей развития и физиологии организма.
5. Генотип – сочетание наследственных факторов, влияющих на развитие живого организма, являющихся сочетанием генетического материала родителей. При передаче от родителей деформированных генов возникают наследственные патологии.
6. Образ жизни – совокупность поведенческих стереотипов и норм, характеризующих конкретный организм.
7. Здоровье (согласно определению ВОЗ).
2. Электромагнитное поле, его виды, характеристики и классификация.
2.1 Основные определения. Виды электромагнитного поля.
• Электромагнитное поле– этоособая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.
• Электрическое поле – создается электрическими зарядами и заряженными частицами в пространстве. На рисунке представлена картина силовых линий (воображаемых линий, используемых для наглядного представления полей) электрического поля для двух покоящихся заряженных частиц:
Магнитное поле– создается при движении электрических зарядов по проводнику. Физической причиной существования электромагнитного поля является то, что изменяющееся во времени электрическое поле возбуждает магнитное поле, а изменяющееся магнитное поле – вихревое электрическое поле. Непрерывно изменяясь, обе компоненты поддерживают существование электромагнитного поля. Поле неподвижной или равномерно движущейся частицы неразрывно связано с носителем (заряженной частицей).
Однако при ускоренном движении носителей электромагнитное поле «срывается» с них и существует в окружающей среде независимо, в виде электромагнитной волны, не исчезая с устранением носителя (например, радиоволны не исчезают при исчезновении тока (перемещения носителей – электронов) в излучающей их антенне).
2.2 Основные характеристики электромагнитного поля.
Электрическое поле характеризуется напряженностью электрического поля(обозначение «E», размерность СИ – В/м, вектор). Магнитное полехарактеризуется напряженностью магнитного поля(обозначение «H», размерность СИ – А/м, вектор). Измерению обычно подвергается модуль (длина) вектора.
Электромагнитные волны характеризуются длиной волны(обозначение «l», размерность СИ - м), излучающий их источник – частотой(обозначение – «n», размерность СИ - Гц).
При частотах 3 – 300 Гц в качестве характеристики магнитного поля может также использоваться понятие магнитной индукции(обозначение «B», размерность СИ - Тл).
2.3 Классификация электромагнитных полей.
Наиболее применяемой является так называемая «зональная» классификация электромагнитных полей по степени удаленности от источника/носителя.
По этой классификации электромагнитное поле подразделяется на «ближнюю» и «дальнюю» зоны. «Ближняя» зона (иногда называемая зоной индукции) простирается до расстояния от источника, равного 0-3l, где l- длина порождаемой полем электромагнитной волны. При этом напряженность поля быстро убывает (пропорционально квадрату или кубу расстояния до источника). В этой зоне порождаемая электромагнитная волна еще не полностью сформирована.
«Дальняя» зона – это зона сформировавшейся электромагнитной волны. Здесь напряженность поля убывает обратно пропорционально расстоянию до источника. В этой зоне справедливо экспериментально определенное соотношение между напряженностями электрического и магнитного полей:
E=377H
где 377 – константа, волновое сопротивление вакуума, Ом.
Электромагнитные волныпринято классифицировать по частотам:
Наименование частотного диапазона | Границы диапазона | Наименование волнового диапазона | Границы диапазона |
Крайние низкие, КНЧ | [3..30] Гц | Декамегаметровые | [100..10] Мм |
Сверхнизкие, СНЧ | [30..300] Гц | Мегаметровые | [10..1] Мм |
Инфранизкие, ИНЧ | [0,3..3] Кгц | Гектокилометровые | [1000..100] км |
Очень низкие, ОНЧ | [3..30] Кгц | Мириаметровые | [100..10] км |
Низкие частоты, НЧ | [30..300] Кгц | Километровые | [10..1] км |
Средние, СЧ | [0,3..3] МГц | Гектометровые | [1..0,1] км |
Высокие, ВЧ | [3..30] МГц | Декаметровые | [100..10] м |
Очень высокие, ОВЧ | [30..300] МГц | Метровые | [10..1] м |
Ультравысокие, УВЧ | [0,3..3] ГГц | Дециметровые | [1..0,1] м |
Сверхвысокие, СВЧ | [3..30] ГГц | Сантиметровые | [10..1] см |
Крайне высокие, КВЧ | [30..300] ГГц | Миллиметровые | [10..1] мм |
Гипервысокие, ГВЧ | [300..3000] ГГц | Децимиллиметровые | [1..0,1] мм |
Измеряют обычно только напряженность электрического поля E. При частотах выше 300 МГц иногда измеряется плотность потока энергииволны, или вектор Пойтинга (обозначение «S», размерность СИ – Вт/м2).
3.Основные источники электромагнитного поля.
В качестве основных источников электромагнитного поля можно выделить:
• Линии электропередач.
• Электропроводка (внутри зданий и сооружений).
• Бытовые электроприборы.
• Персональные компьютеры.
• Теле- и радиопередающие станции.
• Спутниковая и сотовая связь (приборы, ретрансляторы).
• Электротранспорт.
• Радарные установки.
... искусственных факторов окружающей среды является актуальным. Наиболее спорным и нерешенным остается до сих пор поиск средств защиты от искусственных электромагнитных излучений (ЭМИ). Попытка создания универсальной эффективной защиты человека от комбинированных (как по частотным характеристикам, так и по интенсивности) опасных воздействий долгое время не имела успеха. Причина этого видится, ...
... тне поле, хоча щодо доцільності такого підходу існують різні точки зору. Найчастіше людина має справу з полем частотою 50 Гц, яка прийнята як промислова частота (у США – 60 Гц). Щодо впливу на людину електромагнітного поля промислової частоти, саме електричне поле розглядається як таке, яке може становити небезпеку. Магнітне поле, проте, за даними останніх досліджень, також «під підозрою» - йому ...
... предприятиях и организациях монтажа и наладки газоочистного и пылеулавливающего оборудования и аппаратуры; осуществление государственного контроля за работой газоочистных и пылеулавливающих установок на промышленных предприятиях. 8. Влияние электромагнитных полей на окружающую среду и здоровье человека. Основные источники электромагнитных полей Среди основных источников ЭМИ можно перечислить: ...
... типа радиотелефона, дальность связи между трубкой и аппаратом, с учетом наличия помех и переотражающих поверхностей, составляет в среднем до 50 метров. Проблема безопасности при пользовании сотовым телефоном и другими мобильными средствами персональной беспроводной связи имеет два аспекта: физическая безопасность пользователя и безопасность информации, передаваемой с помощью этих устройств. Здесь ...
0 комментариев