2.4 Изучение механизма колебательных реакций.
Детальный механизм описанной выше реакции всё ещё известен не полностью. В первых работах казалось, что число промежуточных продуктов невелико. Для объяснения природы колебаний было достаточно представить себе, как сначала из малоновой кислоты образуется броммалоновая кислота, и при дальнейшей реакции с ней KBrO3 превращается в KBr. Анион Br- тормозит дальнейшее окисление броммалоновой кислоты, и накапливается окисленная форма катализатора (четырёхвалентного церия или трёхвалентного железа в комплексе с фенантролином). В результате прекращается накопление Br-, и окисление броммалоновой кислоты возобновляется... Теперь ясно, что такой механизм далеко не полон. Число промежуточных продуктов достигло четырёх десятков, и изучение продолжается.
В 1972 г. Р. Нойес и сотрудники показали, что реакция Белоусова-Жаботинского – итог, по крайней мере, десяти реакций, которые можно объединить в три группы – А, Б и В. Сначала (группа реакций А) бромат-ион взаимодействует с бромид-ионом в присутствии Н+ с образованием бромистой и гипобромистой кислот:
BrO-3 + Br- + 2H+ = HBrO2 + HOBr (А1)
Далее бромистая кислота реагирует с бромид-ионом, образуя гипобромистую кислоту:
HBrO2 + Br- + H+ = 2HOBr (А2)
Гипобромная кислота, в свою очередь, реагирует с бромид-ионом, образуя свободный бром:
HOBr + Br- + H+ = Br2 + H2O (А3)
Малоновая кислота бромируется свободным бромом:
Br2 + CH2(COOH)2 = BrCH(COOH)2 + Br- + H+ (А4)
В результате всех этих реакций малоновая кислота бромируется свободным бромом:
BrO-3 + 2Br- + 3CH2(COOH)2 + 3H+ = 3BrCH(COOH)2 + 3H2O (А)
Химический смысл этой группы реакций двойной: уничтожение бромид-иона и синтез броммалоновой кислоты.
Реакции группы Б возможны лишь при отсутствии (малой концентрации) бромид-иона. При взаимодействии бромат-иона с бромистой кислотой образуется радикал BrO.2.
BrO-3 + HBrO2 + H+ → 2BrO.2 + H2O (Б1)
BrO.2 реагирует с церием (III), окисляя его до церия (IV), а сам восстанавливается до бромистой кислоты:
BrO.2 + Ce3+ + H+ → HBrO2 + Ce4+ (Б2)
Бромистая кислота распадается на бромат-ион и гипобромистую кислоту:
2HBrO2 → BrO-3 +HOBr + H+ (Б3)
Гипобромистая кислота бромирует малоновую кислоту:
HOBr + CH2(COOH)2 → BrCH(COOH)2 + H2O (Б4)
В итоге реакций группы Б образуется броммалоновая кислота и четырехвалентный церий.
Колебания концентраций основных компонентов реакции: бромистой кислоты и феррина – в фазовом пространстве представляются в виде замкнутой линии (предельного цикла).
BrO-3+ 4Ce3+ + CH2(COOH)2 + 5H+ → BrCH(COOH)2 + 4Ce4+ + 3H2O (Б)
Образовавшийся в этих реакциях церий (IV) (реакции группы В):
6Ce4+ + CH2(COOH)2 + 2H2O →6Ce3+ + HCOOH + 2CO2 +6H+ (В1)
4Ce4+ + BrCH(COOH)2 + 2H2O → Br- + 4Ce3+ + HCOOH + 2CO2 + 5H+ (В2)
Химический смысл этой группы реакций: образование бромид-иона, идущее тем интенсивнее, чем выше концентрация броммалоновой кислоты. Увеличение концентрации бромид-иона приводит к прекращению (резкому замедлению) окисления церия (III) в церий (IV). В исследованиях последнего времени церий обычно заменяют ферроином.
Из этой (неполной) последовательности этапов реакции Белоусова-Жаботинского видно, сколь сложна эта система. Тем замечательнее, что при учете лишь основных промежуточных продуктов соответствующих дифференциальные уравнения достаточно хорошо описывают наблюдаемые процессы.
Так, достаточно учитывать изменение концентрации всего трех основных промежуточных компонентов реакции HBrO2 (бромистой кислоты), Br- и ферроина (или церия). Первый шаг в реакции – в результате автокаталитической реакции образуется бромистая кислота (быстрый, подобный взрыву процесс), ферроин трансформируется в ферриин (окисленную форму ферроина) (рис.3). Второй шаг – в результате взаимодействия с органическим компонентом феррин начинает медленно трансформироваться обратно в ферроин, и одновременно начинает образовываться бромид-ион. Третий шаг – бромид-ион является эффективным ингибитором автокаталитической реакции (1-й шаг). Как следствие, прекращается образование бромистой кислоты, и она быстро распадается. Четвертый шаг – процесс распада ферриина, начатый на 2-м шаге, завершается; бромид-ион удаляется из системы. В результате система возвращается к состоянию, в котором находилась до 1-го шага, и процесс повторяется периодически. Существует несколько математических моделей (систем дифференциальных уравнений), описывающих эту реакцию, колебания концентрации ее реагентов и закономерности распространения концентрационных волн.
3. Экспериментальная часть.
Мной была воспроизведена колебательная реакция взаимодействия лимонной кислоты с броматом калия.
В работе использовались следующие реактивы:
1. KMnO4 (перманганат калия, марки х.ч.).
2. KBrO3 (калий бромноватокислый или бромат калия, чда).
3. H2SO4 (концентрированная).
4. Лимонная кислота (марки х.ч.).
5. Дистиллированная вода.
Ход работы:
Навеску лимонной кислоты - 2г растворили в 6 мл H2O. В полученный раствор добавили навеску калия бромноватокислого - 0,2г и долили 0,7мл концентрированной серной кислоты. Затем внесли 0,04г перманганата калия и довели объем полученного раствора до 10мл дистиллированной водой. Тщательно перемешали до полного растворения реактивов.
Наблюдения:
Сразу после добавления KMnO4 раствор приобрёл фиолетовую окраску и начал «кипеть». Через 25с, при бурном кипении, цвет раствора стал меняться на коричневый. С течением реакции раствор постепенно светлеет - вплоть до светло-желтого цвета. Через 3мин 45с начинается резкое потемнение раствора (похоже на диффузию жидкости высокой плотности), и через 40с раствор снова становится полностью коричневым. Далее все повторяется с периодом 4,5мин - 5мин. Через довольно большой промежуток времени реакция начинает замедляться, затем и прекращается вовсе (раствор жёлтого цвета).
4.Заключение.
Каждый год в мире проводится несколько международных конференций по динамике нелинейных химических систем, а слова «BZ-reaction» (сокращение: реакции Белоусова-Жаботинского) звучат на десятках других конференций, посвященных проблемам физики, химии, биологии. Изучение реакции Белоусова-Жаботинского имеет значение не только теории активных сред. Эта реакция используется как модель для исследования грозного нарушения работы сердца – аритмии и фибрилляций. А в недавнее время были начаты эксперименты со светочувствительной модификацией этой реакции, когда динамика в этой системе зависит от интенсивности света. Оказалось, что такую реакцию можно использовать как вычислительную машину для хранения и обработки изображения. Светочувствительная модификация реакции Белоусова-Жаботинского может служить прототипом вычислительного комплекса, который возможно, придет на смену ЭВМ.
С другой стороны, колебательные химические реакции являются ярким примером самоорганизации в неживой природе, и в этом смысле имеют не только естественно-научное, но и философское значение.
5. Приложение.
Рецепты некоторых колебательных реакций.
Рецепт 1: Необходимо приготовить растворы перечисленных далее веществ из расчета их конечных концентраций: малоновая кислота 0,2М; бромат натрия 0,3М; серная кислота 0,3М; ферроин 0,005М. Ферроин можно заменить сульфатом двухвалентного марганца или трехвалентного церия, но при этом интенсивность окраски будет существенно слабее. Около 5 мл раствора всех компонентов нужно налить в чашку Петри так, чтобы толщина слоя жидкости была 0,5-1 мм. Через 3-8 мин (переходный период) можно наблюдать колебания и химические волны.
Рецепт 2: В плоскую прозрачную кювету слоями (1 мл) налить следующие растворы:
- KBrO3 (0,2 моль/л)
- малоновую кислоту (0,3 моль/л)
- ферроин (0,003 моль/л)
- H2SO4 (0,3 моль/л)
Кювету поставить на лист белой бумаги. Темп реакции можно изменить, добавляя щелочь или кислоту.
Рецепт 3: Необходимы растворы:
- лимонной кислоты (40г в 160 мл H2O)
- H2SO4 (1:3). А также навески:
- KBrO3 (16г)
- Ce2(SO4)3 (3-3,5г)
Раствор лимонной кислоты нагреть до 40°-50° С, затем высыпать навеску KBrO3. Стакан поставить на лист белой бумаги и внести навеску Ce2(SO4)3 и несколько мл H2SO4. Сразу начинает происходить чередование цветов: желтый → бесцветный → желтый, с периодом 1-2 мин.
Рецепт 4: Необходимы растворы:
- H2O2 (50мл 30%)
- KIO3 (7,17г в 50мл H2O)
- HClO4 (30мл разбавленного раствора)
- малоновая кислота (3г в 50мл H2O). И навески:
- MnSO4 (1г) и немного крахмала.
Все слить в один стакан (200-250мл), добавить навески, размешать стеклянной палочкой. Происходит чередование цвета: бесцветный → желтый →голубой.
6. Список литературы.
1. Алиев Р. , Шноль С. Э. «Колебательные химические реакции». Кинетика и катализ. 1998. № 3. С. 130-133.
2. Шноль С. Э. Знание – Сила. 1994. № 3. С. 62-71.
3. Жаботинский А. М. Концентрационные автоколебания. М.: Наука, 1974.
4. Гарел Д., Гарел О. Колебательные химические реакции / Пер. с англ. М.: Мир, 1986.
5. Дубнищева Т. Я. Концепции современного естествознания. Новосибирск: ЮКЭА, 1997, С. 683 – 697.
6. Концепции современного естествознания. Под ред. В. Н. Лавриненко, В. П. Ратникова, М.: ЮНИТИ-ДАНА, 1999, С. 78 - 87.
... это целый класс реакций окисления органических веществ с участием катализатора, обладающего окислительно-восстановительными свойствами. Этот процесс протекает циклично т. е. состоит из многократных повторений. Колебательные химические реакции были открыты и научно обоснованы в 1951 г. советским учёным Борисом Петровичем Белоусовым. Б.П. Белоусов изучал окисление лимонной кислоты при её реакции с ...
... ячейка Бенара. Если в сковородку с гладким дном налить минеральное масло, подмешать для наглядности мелкие алюминиевые опилки и начать нагревать, мы получим довольно наглядную модель самоорганизующейся открытой системы. При небольшом перепаде температур передача тепла от нижнего слоя масла к верхнему идет только за счет теплопроводности, и масло является типичной открытой хаотической системой. Но ...
... осцилляторов 8. 1. Синхронизация N связанных осцилляторов Рассмотрим синхронизацию N связанных осцилляторов на примере электронных генераторов, связанных через емкость, индуктивность и сопротивление. Уравнения колебаний в такой системе имеют вид: (i=1,2,...,N). (5) Здесь xi – напряжения на входах усилителей, ωi – собственные частоты ...
... о биологической причинности. Ряд феноменов, которые витализм считал специфическими для биологических объектов (способность к саморегуляции, усложнение строения, достижение одного результата разными способами) рассматриваются в современном естествознании как типичные проявления процессов самоорганизации любых достаточно сложных систем, а не только живых. Н.Бор: “ни один результат биологического ...
0 комментариев