Содержание
Стр.
1. Введение 2
2. Подложки интегральных микросхем и их назначение 3
2.1. Назначение подложек 3
2.2. Кремний - основной материал полупроводникового производства 4
3. Виды загрязнений поверхности подложек и пластин 5
3.1. Возникновение загрязнений 5
3.2. Источники загрязнений 6
3.3. Виды загрязнений 6
4. Методы удаления загрязнений 8
4.1. Классификация методов очистки пластин и подложек 8
4.2. Способы жидкостной обработки пластин и подложек 9
4.2.1. Обезжиривание 9
4.2.2. Травление 10
4.2.3. Промывание пластин и подложек 13
4.2.4. Интенсификация процессов очистки 13
4.3. Способы сухой очистки пластин и подложек 15
4.3.1. Термообработка 15
4.3.2. Газовое травление 16
4.3.3. Ионное травление 17
4.3.4. Плазмохимическое травление 17
4.4. Типовые процессы очистки пластин и подложек 19
5. Заключение 20
6. Список литературы 20
1. Введение
Современный этап развития радиоэлектроники характеризуется широким применением интегральных микросхем (ИМС) во всех радиотехнических системах и аппаратуре. Это связано со значительным усложнением требований и задач, решаемых радиоэлектронной аппаратурой, что привело к росту числа элементов в ней. За каждое десятилетие число элементов в аппаратуре увеличивается в 5-20 раз. Разрабатываемые сейчас сложные комплексы аппаратуры и системы содержат миллионы и десятки миллионов элементов. В этих условиях исключительно важное значение приобретают проблемы повышения надежности аппаратуры и ее элементов, микроминиатюризации электро-радиокомпонентов и комплексной миниатюризации аппаратуры. Все эти проблемы успешно решает микроэлектроника.
Интегральная и функциональная микроэлектроника являются фундаментальной базой развития всех современных систем радиоэлектронной аппаратуры. Они позволяют создавать новый вид аппаратуры - интегральные радиоэлектронные устройства.
Микроэлектроника - одно из магистральных направлений в радиоэлектронике, и уровень ее развития в значительной степени определяет уровень научно-технического прогресса страны.
Применяют два основных метода изготовления ИМС - полупроводниковый и пленочный.
Первый метод заключается в локальной обработке микроучастков полупроводникового кристалла и придании им свойств, присущих функциям отдельных элементов и их соединений (полупроводниковые интегральные микросхемы).
Второй метод основан на использовании послойного нанесения тонких пленок различных материалов на общее основание (подложку) при одновременном формировании на них схемных элементов и их соединений (пленочные интегральные микросхемы).
В обоих случаях важное значение имеет качество обработки поверхности полупроводниковых пластин и подложек.
* Подложка - заготовка, предназначенная для нанесения на нее элементов гибридных и пленочных ИМС, межэлементных и (или) межкомпонентных соединений, а также контактных площадок.
2. Подложки интегральных микросхем и их назначение.
Подложки в технологии изготовления и конструировании пленочных и гибридных ИМС в микросборках играют очень важную роль. Подложки являются основанием для группового формирования на них ИМС, главным элементом конструкции ИМС и микросборок, выполняющим роль механической опоры, обеспечивают теплоотвод и электрическую изоляцию элементов.
2.1. Назначение подложек.
В технике ИМС подложки выполняют две функции:
а) являются основанием, на поверхности или в приповерхностном слое которого по заданному топологическому рисунку формируют структуры ИМС;
б) являются элементом конструкции, обеспечивающим практическое применение ИМС в корпусном или бескорпусном исполнении.
Подложки классифицируют как по структурным признакам, так и по назначению. По структурным признакам подложки подразделяют на аморфные, поликристаллические и монокристалличёские, а по назначению - на подложки для полупроводниковых, пленочных, гибридных ИМС и микросборок.
Для изготовления полупроводниковых ИМС применяют в основном полупроводниковые монокристаллические подложки (полупроводниковые пластины), а для пленочных и гибридных ИМС - аморфные поликристаллические (диэлектрические) подложки.
* Полупроводниковая пластина - заготовка из полупроводникового материала, используемая для изготовления полупроводниковых ИМС.
В отдельных случаях при изготовлении полупроводниковых ИМС используют диэлектрические подложки, а при изготовлении гибридных ИМС и микросборок - металлические подложки. К конструкции и материалу подложек предъявляется ряд требований, вытекающих из необходимости воспроизведения и обеспечения заданных электрических параметров элементов и ИМС, их надежности в самых различных условиях эксплуатации, и обусловленных также особенностями технологии изготовления и сборки ИМС.
Монокристаллические пластины из разных полупроводниковых материалов составляют основу для изготовления полупроводниковых ИМС различного конструктивно-технологического исполнения и функционального назначения.
Пригодность полупроводникового материала для использования в интегральных микросхемах определяется в основном параметрами, зависящими от его физических свойств: оптических, термических, термоэлектрических, зонной структуры, ширины запрещенной зоны, положения в ней примесных уровней и др.
Очень важны электрические свойства полупроводникового материала: тип электропроводности, концентрация носителей заряда, их подвижность, удельное сопротивление, время жизни неосновных носителей заряда и их диффузионная длина - существенно зависящие от технологии получения полупроводника.
... - внутренняя и наружная шестерни, 4 - сепараторы , 5 - пластины По характеру воздействия абразива на полупроводниковые пластины различают шлифование свободным и связанным абразивом. В зависимости от зернистости используемого абразива, режимов обработки и качества полученной поверхности различают предварительное (черновое) и окончательное (чистовое) шлифование. Шлифование свободным абразивом ...
... от структуры силикатных стёкол, и способно выдерживать умеренные концентрации катионов (например, натрий до 0,1%), не увеличивая электропроводимость. Боратное стекло отвечает требованиям герметизации полупроводниковых приборов: свободно от щелочных металлов, уплотняется (спаивается) при температуре до 800С, относительно инертно и водонепроницаемо, имеет регулируемые коэффициенты температурного ...
... должно соблюдаться на протяжении всего процесса зонной плавки. Для того, чтобы допущение 3 оказалось состоятельным, требуется использовать при кристаллизационной очистке исходные материалы прошедшие предварительную очистку. 1.2 Расчет распределения примеси вдоль слитка кремния после зонной плавки (один проход расплавленной зоной) 1.2.1 Расчет распределения Si-Ga. Рассчитаем распределение галия ...
... слитка используют следующий маршрут: подготовка слитка и разделение его на пластины, предварительная, а затем окончательная обработка пластин. Подготовка и разрезание полупроводникового слитка на пластины Слитки калибруют (шлифуют) по диаметру в связи с тем, что после выращивания они могут иметь конусность и волнистость цилиндрической поверхности, а также отклонения диаметра превышающие ...
0 комментариев