2.7 ВЫБОР ПРИВОДНОГО ЭЛЕКТРОДВИГАТЕЛЯ

 

В качестве приводного электродвигателя обычно используется трехфазный асинхронный электродвигатель с короткозамкнутым ротором общепромышленного применения. Электродвигатель выбираем при соблюдении следующих условий:

 ;

 ,

где  и  - соответственно номинальные паспортное и расчетное значения активной мощности на валу ротора насоса;

 и  - соответственно номинальные паспортные значения частоты вращения роторов электродвигателя и насоса.

Расчетная номинальная мощность на валу ротора насоса при дроссельном регулировании скорости

,

где  - расчетная мощность на валу ротора насоса, кВт;

 - расчетное значение номинального давления на выходном штуцере насоса ( точка А ), МПа;

 - значение номинальной производительности ( подачи ) на выходном штуцере насоса ( точка А ), м3/с;

 - общий КПД выбранного типоразмера насоса.

кВт.

Выбираем трехфазный асинхронный электродвигатель с короткозамкнутым ротором 4А132М4У3, имеющий следующую техническую характеристику:

номинальная мощность - 4 кВт>2 кВт;

синхронная частота вращения - 25 об/с==25 об/с;

масса – 100 кг.

3 РАЗРАБОТКА МИКРОКОНТРОЛЛЕРНОЙ СИСТЕМЫ УПРАВЛЕНИЯ

3.1 ВЫБОР МИКРОКОНТРОЛЛЕРА

Для обработки информации с датчиков положения, выполнения алгоритма работы и подачи управляющих сигналов на исполнительную гидравлическую аппаратуру применяем 28-выводный микроконтроллер PIC14000, тактовая частота которого без применения кварцевого резонатора 4МГц, объем ОЗУ 192 байта, 22 линии ввода-вывода, объем ПЗУ 4Кх14.

Данный микроконтроллер – дешевое микроэлектронное устройство, имеет достаточные технические характеристики для обслуживания разрабатываемой системы синхронизации.

Основные функции микроконтроллера в разрабатываемой системе – это опрос четырех датчиков положения, десяти датчиков давления, шести элементов фильтрации рабочей жидкости, проведение расчетов по алгоритму работы и выдача сигналов управления на предохранительные клапаны, дросселирующие распределители и приводные электродвигатели.

Функциональная схема микроконтроллерной системы управления представлена на рисунке 3.1.


Рисунок 3.1 – Функциональная схема микроконтроллерной системы управления

3.2 ВЫБОР ДАТЧИКА ПОЛОЖЕНИЯ И РАСЧЕТ СХЕМЫ СОПРЯЖЕНИЯ С МИКРОКОНТРОЛЛЕРОМ

Для обеспечения измерения рабочего диапазона перемещения траверсы используем закрытую систему измерения линейных перемещений на базе фотоэлектрической линейки LS-623 со следующими техническими характеристиками:

-     рабочий диапазон измерений – 2540мм;

-     межштриховой шаг – 20мкм;

-     системная точность 10мкм;

-     разрез линейки (высота х толщина) 75х37мм.

Система имеет прямоугольные импульсы (ТТL-выход).

Выбранная система измерения линейных перемещений удовлетворяет всем требованиям по монтажу, габаритным размерам и диапазону измерения.

Схема сопряжения датчика положения с микроконтроллером представляет собой набор счетчиков, которые считают импульсы от датчика и через регистр-защелку передают данные в порт микроконтроллера.

Расчет необходимых параметров схемы сопряжения выполняем для рабочего хода траверсы при максимальной скорости движения  =30 мм/с и минимальной скорости движения =0,2 мм/с. Опрос датчиков положения необходимо организовать через каждые 2 секунды – время переходного процесса системы синхронизации по положению (определено при моделировании системы).

С учетом того, что шаг линейки 0,02 мм (50 импульсов за 1с),

при =30мм/c: за 2с количество импульсов от датчиков=2×30×50=3000имп.;

при =0,2мм/c: за 2с количество импульсов от датчиков=2×0,2×50=20имп.

Т.о. опрос датчика положения контроллер будет вести через каждые 20 импульсов.

Для подсчета импульсов от датчика положения выбираем четырех разрядный счетчик К555ИЕ7.

Необходимое количество микросхем счетчиков для подсчета 20 импульсов – 2 шт., т.к. 20 в двоичном коде =25 (два 4-х разрядных счетчика).

Для фиксирования информации на выходе счетчика импульсов используем RS-триггер.

Логический элемент “И” К555ЛИ5, сигнал на выходе которого служит для установки информации на триггере и обнуления старшего счетчика импульсов.

В системе всего 4 датчика положения, информация с которых поступает на один порт А микроконтроллера.

После считанной информации с триггеров микроконтроллер через порт С сбрасывает те триггеры в 0, с которых прочитана информация. При этом в соответствующих регистрах накопителях ведется подсчет суммарного положения траверсы относительно нижнего штампа.

Принципиальная схема сопряжения датчика положения с микроконтроллером представлена на рисунке 3.2.


Рисунок 3.2 – Принципиальная схема сопряжения датчика положения с микроконтроллером


Информация о работе «Разработка системы синхронизации положения траверсы гидравлического пресса усилием 75000тс»
Раздел: Цифровые устройства
Количество знаков с пробелами: 27215
Количество таблиц: 0
Количество изображений: 14

0 комментариев


Наверх