Общие положения по нейронным сетям

46465
знаков
0
таблиц
10
изображений

4.1. Общие положения по нейронным сетям.


Один из возможных подходов к многомерным и зачастую нели­нейным информационным рядам финансового рынка заключается в том, чтобы по возможности подражать образцам поведения участ­ников рынка, используя такие методы искусственного интеллекта, как экспертные системы или нейронные сети.

На моделирование процессов принятия решений этими методами было потрачено много усилий. Оказалось, однако, что экспертные системы в сложных ситуациях хорошо работают лишь тогда, когда системе присуща внутренняя стационарность (т.е. когда на каждый входной вектор имеется единственный не меняющийся со временем ответ). Под такое описание в какой-то степени подходят задачи ком­плексной классификации или распределения кредитов, но оно пред­ставляется совершенно неубедительным для финансовых рынков с их непрерывными структурными изменениями. В случае с финансо­выми рынками едва ли можно утверждать, что можно достичь пол­ного или хотя бы в определенной степени адекватного знания о данной предметной области, в то время как для экспертных систем с алгоритмами, основанными на правилах, это — обычное требова­ние.

Н
ейронные сети предлагают совершенно новые многообещаю­щие возможности для банков и других финансовых институтов, ко­торым по роду своей деятельности приходится решать задачи в усло­виях небольших априорных знаний

о среде.

Рис.2. Блок-схема финансового

прогнозирования при помощи нейронных сетей.


Характер финансовых рынков драматическим образом меняется с тех пор, как вследствие ослабления контроля, приватизации и появления новых финансовых инструментов национальные рынки слились в общемировые, а в большинстве секторов рынка возросла свобода финансовых опера­ций. Очевидно, что сами основы управления риском и доходом не могли не претерпеть изменений, коль скоро возможности диверси­фикации и стратегии защиты от риска изменились до неузнаваемо­сти.

Возможности такого при­менения облегчаются тем, что имеются огромные базы экономиче­ских данных, — ведь сложные модели всегда прожорливы в отноше­нии информации.

Существенными составными частями нового подхода являются: ней­ронные сети (сети компьютерных процессоров, взаимодействие ко­торых построено по образцу процессов обучения, происходящих в человеческом мозге). Общей чертой новых методов является воз­можность распознавания образов и генетические алгоритмы (методы, в которых, исходя из большого набора первоначальных предположений, выра­батывают все более правильные представления о поведении рынка и, в конечном счете, более содержательные рабочие гипотезы). Про ме­тоды обоих видов говорят, что они управляются данными, в проти­воположность подходу, основанному на применении правил, кото­рый принят в экспертных системах. Системы, основанные на знани­ях, обладают тем недостатком, что построенные на их основе методы торговли оказываются довольно негибкими.

Нейронные сети хорошо приспособлены для решения задач классификации и анализа временных рядов. Задача классификации понимается как задача от­несения предъявленного объекта к одному из нескольких попарно непересекающихся множеств. При этом наиболее важным случаем здесь является бинарная классификация — примерами ее могут слу­жить распознавание доходных и недоходных инвестиций или разли­чение компаний, имеющих хорошие шансы выжить, от тех, которые должны обанкротиться. Способность к моделированию нелинейных процессов, работе с зашумленными данными и адаптивность дают возможность приме­нять нейронные сети для решения широкого класса финансовых за­дач. Время обучения зависит от сложности задач, от выбора на­чальных решений и требуемого качества алгоритма.

В связи с этим не представляется возможным рассмотрение модели работа банка , так как полное описание модели требует большого количества переменных и достаточно сложных связей между ними.

Но, тем не менее, есть выход: разбить общую модель на части. Нельзя сказать, что это решит все проблемы .Между тем , такой подход имеет и свои положительные стороны.

Банк аккумулирует временно свободные денежные средства(вклады).Для того, что бы привлечь вкладчиков, необходимо осуществление таких операций и предоставляемых услуг, что бы доход, полученный в результате был бы оптимальным. Одна из предоставляемых услуг : покупка-продажа наличной валюты. Доходы подвержены значительным колебаниям в зависимости от конъюнктуры рынка. В этом случае существенную помощь может оказать, например, прогнозирование курсов валют, ставок.

Рассмотрим прогнозирование ставки доллара к немецкой марке.


4
.2.Прогнозирование ставки доллара к немецкой марке.


Рис.3. Общая схема работы.



Обучение происходило основываясь на информации о 700 дней. Сеть использовала предсказания изменения ставки на 1 день вперед.. Предсказанные значения для ставки показываются черным цветом. Действительные значения - серым. Прямая с квадратиками – проверочное. (рис.4.)

Рис.4.


Рис.5.


Во время обучения сети были построены обобщающие правила, основываясь на которых было осуществлено предсказание на 35 дней торговли.(рис.5)

Сеть выводит пунктиром, в действительности - сплошной линией.

Таким образом, благодаря этой информации, банк может подкорректировать работу валютного отдела , избежать ошибок в выборе стратегий , потери денег.


Заключение.

Коммерческий банк - это кредитное учреждение, реализующее экономические интересы. Банковское дело - как правило, весьма выгодный бизнес, основанный на определенных принципах. Основной - прибыльность. Показатель прибыли официально считается основным показателем деятельности банка. Иначе говоря, размер капитала, т.к. в балансовом отчете в разделе собственные средства (капитал) прибыль занимает не последнее место. Размер капитала банка имеет исключительное значение для его деятельности. Во-первых, регулирующие органы устанавливают мини­мально необходимый размер капитала для вновь созда­ваемых и работающих банков. Во-вторых, капитал бан­ков служит основой (капитальной базой) для установ­ления регулирующими органами нормативов, определя­ющих контролируемые показатели их деятельности. Наконец, чем больше размер капитала банка, тем выше уверенность его вкладчиков, кредиторов и клиентов, поскольку при этом повышается его надежность.

Т.о. для получения наибольшей прибыли предполагается создание и организация:

системы информации;

системы прогнозирования денежных ресурсов;

системы принятия решений;

системы контроля.

Представление динамической модели работы банка в виде программы оправды-вает себя, когда число отделов (S) и объемы финансирования (N) достаточно большие. (Уже при S>4 , N>10)

В этом случае преимущества такого подхода к решению задачи неоспоримы, так

как в ручную рассчитать такой объем информации сложно, и программа дает неплохие результаты.

Программа настроена на определенную организационную структуру, базирующуюся на отделах.

Методика, изложенная в данной работе, может быть применена в любом отдельно взятом банке. Например, в следующих банках: Возрождение, Волгопромбанк, Индустриальный, РусЮгБанк, Сава и др.


Приложение 1.


Модель общего вида задачи распределения усилий.


Такой же динамический под­ход в той же мере справедлив и в случае, когда огра­ничение нелинейно, и в случае, когда огра­ничение является линейным..

Модель описывается следующими соотношениями:


Максимизировать (1’)


при ограничениях (2’)

yj = 0 , 1, 2, ... при любом j. (3’)

Допустим, что каждая функция Hj(yj) есть неубывающая функция, принимающая целочисленные значения при любом yj = 0, 1, 2, ... и удовлетворяющая условию Hj(0) = 0. Для упрощения рассужде­ний принимается, что H1(y1) = y1, вследствие чего допустимое решение существует при любом значении N. На каждую величину yj можно также наложить ограничение сверху.

Рекуррентное соотношение динамического программирования, соответствующее задаче (1’) — (3’), имеет следующий вид:

gj = max {Rj (yj) +gj-1 [ n – Hj(yj)]}, j = 1,2,...,s, (4’)

g0 ( n ) ≡ 0, j = 0 , (5’)

где n = 0, 1, ..., N, а максимум берется только по неотрицатель­ным целочисленным значениям yj, удовлетворяющим условию Hj(yj) ≤ n. Отыскивается значение gs(N). Для выполнения вычисле­ний нужно определить по выражению (4’) значения каждой функции gj(n) при n = 0, 1, ..., N, начиная с j = 1 и заканчивая j=s. [4].


Приложение 2.


Листинг.

{ Динамическая модель работы банка }

program Bank;


uses Crt;


const

S = 10; { Число отделов }

N = 67; { Общий объем финансирования }

Lmax = 17; { Максимальное финансирование отдела }


{ Зависимости доходов от вложений по видам исследований и отделам }

P : array[1..S, 0..Lmax] of integer = (

{0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 }

(0, 0, 3, 1, 1, 22, 10, 17, 2, 9, 10, 6, 6, 17, 14, 10, 10, 10 ),

(0, 0, 3, 1, 1, 2, 10, 17, 9, 2, 11, 7, 6, 13, 13, 13, 13, 13 ),

(0, 0, 3, 8, 1, 20, 17, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 8 ),

(0, 1, 3, 1, 1, 22, 10, 17, 3, 9, 20, 6, 6, 17, 14, 10, 10, 10 ),

(0, 1, 30,8, 1, 2, 11, 17, 4, 2, 11,27,26, 33, 33, 33, 33, 33 ),

(0, 1, 3, 7, 1, 14, 17, 6, 6, 6, 6, 7,17, 18, 18, 18, 8, 28 ),

(0, 3, 2, 6, 1, 22, 10, 14, 7, 9, 10, 6, 6, 17, 14, 15, 10, 11 ),

(0, 3, 1, 5, 1, 2, 0, 17, 9, 2, 11, 7, 6, 13, 13, 13, 13, 13 ),

(0, 5, 6, 14,1, 21, 15, 6, 8, 6, 6, 7, 7, 8, 11, 8, 8, 8 ),

(0, 6, 9, 3, 1, 20, 12, 4, 6, 1, 6, 7, 7, 8, 14, 18, 28, 38 )

);


Q : array[1..S, 0..Lmax] of integer = (

{0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 }

(0, 0,13, 3, 3, 23, 30, 15,12,19, 11, 1, 1, 11, 13, 14, 14, 14 ),

(0, 0, 3, 1,11, 2, 10, 17,19, 2, 11, 7, 6, 13, 13, 33, 33, 14 ),

(0, 0, 3, 8,11, 20, 17, 6, 16, 6, 6, 7, 7, 8, 8, 38, 48, 5 ),

(0, 1, 3, 1,11, 22, 10, 17,13, 9, 20, 6, 6, 17, 14, 40, 14, 15 ),

(0, 1, 30,8,11, 2, 11, 17,11, 2, 11,27,26, 33, 33, 32, 34, 35 ),

(0, 1, 3, 7,11, 14, 17, 6, 16,16,16, 17,17, 18, 18, 28, 14, 25 ),

(0, 3, 2, 6,11, 22, 10, 14,17,19, 10, 6,16, 17, 14, 15, 10, 15 ),

(0, 3, 1, 5,11, 2, 0, 17,19,12, 11, 7,16, 13, 13, 13, 15, 13 ),

(0, 5, 6, 14, 11, 21, 15, 6, 18,16,16, 17,17, 8, 11, 18, 18, 18 ),

(0, 6, 9, 3,11, 20, 12, 4, 16,11,16, 7, 7, 8, 14, 18, 28, 38 )


);


R : array[1..S, 0..Lmax] of integer = (

{0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 }

(0, 0, 0, 0, 0, 20, 0, 10, 0, 0, 10, 0, 6, 10, 10, 10, 10, 10 ),

(0, 0,13,11, 1,12, 10, 17,19,12, 11,17,16, 13, 13, 13, 13, 13 ),

(0, 0,13,28,11, 20, 17,16, 16,16,16, 27,37, 38, 38, 18, 18, 8 ),

(0,11,13,21,11, 22, 10, 17, 3, 9, 20, 6, 6, 17, 14, 10, 10, 10 ),

(0,11, 30,8,11,12, 11, 17,14, 2, 11,27,26, 33, 33, 33, 33, 33 ),

(0,11,13,27, 1, 14, 17,16, 16, 6, 6, 7,17, 18, 18, 18, 8, 28 ),

(0,13,12,26, 1, 22, 10, 14,17, 9, 10,26,26, 17, 14, 15, 10, 11 ),

(0,13,11,25,21, 2, 0, 17,19, 2, 11,27,26, 13, 13, 13, 13, 13 ),

(0,15,16,21,21, 21, 15,16, 18, 6, 6, 27,27, 28, 11, 28, 28, 8 ),

(0,16,19,23, 1, 20, 12, 4, 26,21,26, 27,27, 28, 14, 18, 28, 38 )


);


{ Максимальные объемы финансирования отделов }

L : array[1..S] of integer = ( 12, 5, 3, 10, 11, 7, 8, 10, 6, 17 );


function min(a, b : integer) : integer;

begin

if a > b then min := b

else min := a;

end;


var

i, j, y, k, f : integer;

Sum, nn : integer;


pp, qq, rr : array[1..S, 0..Lmax] of integer;


T : array[0..S, 0..N] of record

y, g : integer;

end;


T2 : array[0..3, 0..Lmax] of record

y, g : integer;

end;


Income : array[1..S, 0..3] of integer;


begin

ClrScr;


{ Поиск p(y) }

for j := 1 to S do

for y := 0 to L[j] do

pp[j, y] := P[j, y];


{ Поиск q(y) }

for j := 1 to S do

for y := 0 to L[j] do begin

qq[j, y] := Q[j, 0] + pp[j, y];

for i := 1 to y do

if Q[j, i] + pp[j, y-i] > qq[j, y] then

qq[j, y] := Q[j, i] + pp[j, y-i];

end;


{ Поиск r(y) }

for j := 1 to S do

for y := 0 to L[j] do begin

rr[j, y] := R[j, 0] + qq[j, y];

for i := 1 to y do

if R[j, i] + qq[j, y-i] > rr[j, y] then

rr[j, y] := R[j, i] + qq[j, y-i];

end;


{ Поиск g }

for i := 0 to N do begin

T[0, i].y := 0;

T[0, i].g := 0;

end;


for j := 1 to S do

for i := 0 to N do begin

T[j, i].y := 0;

T[j, i].g := rr[j, 0] + T[j-1, i].g;

for y := 1 to min(L[j], i) do

if rr[j, y] + T[j-1, i-y].g > T[j, i].g then begin

T[j, i].y := y;

T[j, i].g := rr[j, y] + T[j-1, i-y].g;

end;

end;


{ Распределение средств по отделам }

nn := N;

for j := S downto 1 do begin

Income[j, 0] := T[j, nn].y;

nn := nn - Income[j, 0];

end;


{ Распределение средств в каждом отделе }

for k := 1 to S do begin

for i := 0 to Income[k, 0] do begin

T2[0, i].y := 0;

T2[0, i].g := 0;

end;


for j := 1 to 3 do

for i := 0 to Income[k, 0] do begin

T2[j, i].y := 0;

case j of

1 : T2[j, i].g := P[k, 0] + T2[j-1, i].g;

2 : T2[j, i].g := Q[k, 0] + T2[j-1, i].g;

3 : T2[j, i].g := R[k, 0] + T2[j-1, i].g;

end;


for y := 1 to i do begin

case j of

1 : f := P[k, y];

2 : f := Q[k, y];

3 : f := R[k, y];

end;


if f + T2[j-1, i-y].g > T2[j, i].g then begin

T2[j, i].y := y;

T2[j, i].g := f + T2[j-1, i-y].g;

end;

end;

end;


nn := Income[k, 0];

Income[k, 3] := T2[3, nn].y;

nn := nn - Income[k, 3];

Income[k, 2] := T2[2, nn].y;

nn := nn - Income[k, 2];

Income[k, 1] := T2[1, nn].y;

end;


{ Результаты }

WriteLn('Динамическая модель работы банка');

Sum := 0;

for j := 1 to S do begin

for i := 1 to 3 do

WriteLn('y[', j, ', ', i, '] := ', Income[j, i]);

WriteLn('Расход: ', Income[j, 0]);

WriteLn('Доход: ',

P[j, Income[j, 1]] + Q[j, Income[j, 2]] + R[j, Income[j, 3]]);

Sum := Sum + P[j, Income[j, 1]] + Q[j, Income[j, 2]] + R[j, Income[j, 3]];

readkey;

end;

WriteLn('Общий доход: ', Sum);

WriteLn(' Сделанные вложения: ', Sum);

readkey;

end.


Результаты.


y[1,1]=5 y[2,1]=0 y[3,1]=0 y[4,1]=5

y[1,2]=2 y[2,2]=0 y[3,2]=0 y[4,2]=0

y[1,3]=5 y[2,3]=2 y[3,3]=3 y[4,3]=3

Расходы:12 Расходы:2 Расходы:3 Расходы:8

Доходы:55 Доходы:13 Доходы:28 Доходы:43


y[5,1]=2 y[6,1]=0 y[7,1]=5 y[8,1]=0

y[5,2]=2 y[6,2]=4 y[7,2]=0 y[8,2]=0

y[5,3]=2 y[6,3]=3 y[7,3]=3 y[8,3]=5

Расходы:6 Расходы:7 Расходы:8 Расходы: 3

Доходы:12 Доходы:38 Доходы:48 Доходы:25


y[9,1]=3 y[10,1]=5

y[9,2]=1 y[10,2]=5

y[9,3]=1 y[10,3]=3

Расходы:5 Расходы:13

Доходы:34 Доходы:63


Было осуществлено финансирование в размере 67 миллионов долларов.

Общая прибыль составила 437 миллионов долларов.

Итого, чистая прибыль 370 миллионов долларов.


Литература.


1)Банки и банковские операции : Учебник для вузов. / Под редакцией Е.Ф.Жукова.

-М.:Банки и биржи , ЮНИТИ ,1997.


2)Банковское дело / Под редакцией О.И.Лаврушина .-М .: Банковский и биржевой научно- консультационный центр , 1992 .


3)Банковское дело / Под редакцией В.И.Колесникова , Л.П.Кроливецкой .- М.:Финансы и статистика , 1995 .


4)Бэстенс Д.-Э.,Ван Дер Берг В.-М.,Вуд Д. .Нейронные сети и финансовые рынки :принятие решений в торговых операциях. М.:ТВП,Финансы и страховая математика ,т.3.,1997.


5)Вагнер Г. Основы исследования операций.-М.: Мир, т.2 ,1973.


6)Гуриев С.М. ,Поспелов И.Г. .Модель деятельности банка при отсутствии инфляции и экономического роста.// Экономика и математические методы , том 33 , вып.3 ,1997.


7)Киперман Г.Я.,Сурганов Б.С..Популярный экономический словарь .- М.: Экономика , 1993.


8)Перар Ж.Управление международными денежными потоками.- М.:Финансы и статистика,1998.


9)Садвакасов К..Коммерческие банки.Управленческий анализ деятельности .

Планирование и контроль. - М.:Ось-89,1998.


10)Черкасов В.Е.Финансовый анализ в коммерческом банке. – М.:ИНФРА--М, 1995.


11)Юдин Д.Б., Березнева Т.Д.. Статистические и динамические модели стохастического программирования.// Применение исследования операций в экономике.М.:Экономика,1977.

1 Отношение взвешенных, с учетом риска, активов банка к капиталу. Колеблется в пределах от 0.1 до 1.0.


2 Пересчет направления осуществляется на каждом шаге.

3 См. приложение.

4 См. приложение


Содержание: Введение................................................................................................1 Глава1.Банковская система.................................................................2 Глава2.Виды моделей..........................................................................6

2.1.Линейное программирование.............................................6

2.2.Стохастическое программирование...................................7

2.3.Формальная постановка стохастической задачи...............9

2.4.Методы решения.................................................................10 Глава3.Динамическая модель работы банка...................................12

3.1.Вводные сведения...............................................................12

3.2.Постановка задачи..............................................................13 Глава4.Нейронные сети......................................................................16

4.1.Общие положения.............................................................16

4.2.Прогнозирование ставки доллара к немецкой марке.....18 Заключение...........................................................................................20 Приложения..........................................................................................21 Литература...........................................................................................27


Министерство общего и профессионального образования

Российской Федерации


Волжский гуманитарный институт


Волгоградского государственного университета


Кафедра информатики и математического моделирования

дипломная работа

на тему: Моделирование работы банка.


Выполнила: студентка 5 курса

ПМФ - 942 группы

Шалимова М.В.___________

(подпись)


Научный руководитель:

к.т.н., доцент

Мирецкий И.Ю.___________

(подпись)


Заведующий кафедрой:

к.ф.-м.н., доцент

Батхин А.Б.________________

(подпись)


Волжский

19


Информация о работе «Моделирование работы банка»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 46465
Количество таблиц: 0
Количество изображений: 10

Похожие работы

Скачать
9863
1
6

... (1.6) Из соотношения (1.6) найдем  соответствующее Х, которое будем принимать за случайное число, обозначающее время обслуживания данной кассой. 3.                ПРОГРАММНОЕ РЕШЕНИЕ   Программа имитационного моделирования работы банка написана на языке C с помощью среды разработки Borland C++ 3.1. Исходный текст программы состоит из следующих файлов: – main.c – содержит реализацию ...

Скачать
19299
0
5

... и очередей к их кассам в каждый момент времени в течение рабочего дня. Критерий оценки результата. Модель должна правдоподобно отражать события реального мира, т.е. работу двух кассиров в банке. Теоретическая часть В общем случае, под имитацией (simulation) понимают процесс проведения на ЭВМ экспериментов с математическими моделями сложных систем реального мира. Целью имитационного ...

Скачать
20916
4
7

... клиента. Промежутки между входами распределены по закону Пуассона с параметром lambda; – void inf (void) - Функция вывода информации пользователю. РУКОВОДСТВО пользователя 1.                Программа имитационного моделирования работы банка расположена по следующему адресу: A:Kas1.exe 2.                На запрос программы: «Введите количество касс в кассовом зале ж\д вокзала:» Вводим ...

Скачать
156009
10
6

... ликвидности определяется в немаловажной степени и внешними факторами. Их непосредственное воздействие отразилось на внешней стороне ликвидности филиала. Таблица 2.12- Динамика выполнения нормативов ликвидности   Филиал №616 ОАО «АСБ Беларусбанк» ОАО «АСБ Беларусбанк» Показатели Нормативное значение На 01.01.2007 На 01.01.2008 На 01.01.2009 На 01.01.2010 На ...

0 комментариев


Наверх