Министерство образования и науки Украины
Одесский государственный экономический университет
кафедра________________________
Реферат по курсу "Экономический анализ"
на тему:
"Числа Фибоначчи: технический анализ".
Выполнил: студент 33 группы ФМЭ
Кушниренко Сергей
Научный руководитель:
Коптельцева Лидия Васильевна
Одесса
2003
Содержание:
Введение. 3
История и свойства последовательности. 3
Использование чисел Фибоначчи в изменении тренда. 5
Множественные ценовые цели по Фибоначчи. 8
Заключение. 11
Список литературы.. 12
Введение. Итальянский купец Леонардо из Пизы ( 1180-1240), более известный под прозвищем Фибоначчи был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.
Жизнь и научная карьера Леонарда теснейшим образом связана с развитием европейской культуры и науки.
В век Фибоначчи возраждение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих 2, император (с 1220 года) "Священной Римской империи Германской Нации". Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства. Поэтому к преподаванию в основанном им Неаполитанском университете, наряду с христианскими учеными, он привлек арабов и евреев.
Столь любимые его дедом рыцарские турниры, на которых сражающиеся калечили друг друга на потеху публике, Фридрих II совсем не признавал. Вместо этого он культивировал гораздо менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.
На таких турнирах и заблистал талант Леонарда Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.
Впоследствии Фибоначчи пользовался неизменным покровительством Фридриха II.
Это покровительство стимулировало выпуск научных трактатов Фибоначчи:
обширнейшей "Книге абака", написанной в 1202 году, но дошедшей до нас во втором своем варианте, который относится к 1228 г.; "Практики геометрии"( 1220г.); "Книги квадратов"(1225г.). По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику чуть ли не до времен Декарта ( 17 в.).
Наибольший интерес представляет сочинение "Книга абака". Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими ("арабскими") цыфрами.
Основной целью ланного реферата является изучение основных свойствчисел Фибоначчи и их применение в практике трендового анализа. История и свойства последовательности.Леонард Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.
Числовая последовательность Фибоначчи имеет много интересных свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.
Одно из самых главных следствий этих свойств различных членов последовательности определяются следующим образом:
1.Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют (ФИ), и мы поговорим о нем подробнее немного позже.
2.При делении каждого числа на следующее за ним через одно получаем число 0.382; наоборот – соответственно 2.618.
3.Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236. упомянем также 0.5 (1/2). Все они играют особую роль в природе, и в частности – в техническом анализе.
Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи.
Например, число 0.618 представляет собой постоянный коэффициент в так называемом золотом сечении (рис.1), где любой отрезок делится таким образом, что соотношение между его меньшей и большей частью равно соотношению между большей частью и всем отрезком. Таким образом, число 0.618 известно еще как золотой коэффициент или золотая середина. Такого типа пропорцию можно встретить абсолютно везде (рис.2).
Рисунок 1. Золотое сечение
Рисунок 2. Примеры соотношений Фибоначчи
Золотой коэффициент используется природой для построения ее частей, начиная от больших и заканчивая малыми. Современная наука считает, что Вселенная развивается по так называемой золотой спирали (рис.3), которая строится именно с помощью золотого коэффициента. Эта спираль в буквальном смысле не имеет конца и начала. Меньшие витки никогда не сходятся в одну и ту же точку, а большие неограниченно развиваются в пространстве.
Рисунок 3. Золотая спираль
Некоторые из соблюдающихся соотношений:
Самое важное заключается в том, что с помощью всех этих, в каком-то роде мистических, чисел, описываются разнородные процессы во Вселенной.
Использование чисел Фибоначчи в изменении тренда.Изучив вышеизложенную последовательность, можно предположить использование последовательность Фибоначчи при прогнозировании цены, то есть. в техническом анализе.
Эту мысль высказал еще в 30-е годы один из самых известных людей, внесших вклад в теорию технического анализа – Ральф Нельсон Эллиотт. С тех пор конкретная польза применения этой идеи практически во всех методах технического анализа не вызывает сомнения.
Ральф Hельсон Эллиотт был инженером. После серьезной болезни в начале 1930х гг. он занялся анализом биржевых цен, особенно индекса Доу-Джонса. После ряда весьма успешных предсказаний Эллиотт опубликовал в 1939 году серию статей в журнале Financial World Magazine. В них впервые была представлена его точка зрения, что движения индекса Доу-Джонса подчиняются определенным ритмам. Согласно Эллиотту, все эти движения следуют тому же закону, что и приливы - за приливом следует отлив, за действием (акцией) следует противодействие (реакция). Эта схема не зависит от времени, поскольку структура рынка, взятого как единое целое, остается неизменной.
Эллиотт писал: "Закон природы включает в рассмотрение важнейший элемент- ритмичность. Закон природы - это не некая система, не метод игры на рынке, а явление, характерное, видимо, для хода любой человеческой деятельности. Его применение в прогнозировании революционно."
Этот шанс предсказать движения цен побуждает легионы аналитиков трудиться денно и нощно. Вводя свой подход, Эллиотт был очень конкретен. Он писал: "любой человеческой деятельности присущи три отличительных особенности: форма, время и отношение, -и все они подчиняются суммационной последовательности Фибоначчи".
Один из простейших способов применения чисел Фибоначчи на практике – определение отрезков времени, через которое произойдет то или иное событие, например, изменение тренда. Аналитик отсчитывает определенное количество фибоначчиевских дней или недель (13, 21, 34, 55 и т.д.) от предыдущего сходного события.
Числа Фибоначчи имеют широкое применение при определении длительности периода в Теории Циклов. За основу каждого доминантного цикла берется определенное количество дней, недель, месяцев, связанное с числами Фибоначчи. Например, длина Цикла (Волны) Кондратьева равна 54 годам. Отметим близость этой величины к фибоначчиевскому числу 55.
Один из способов применения числа Фибоначчи – построение дуг (рис.4).
Рисунок 4. Дуги.
Центр для такой дуги выбирается в точке важного потолка (top) или дна (bottom). Радиус дуг вычисляется с помощью умножения коэффициентов Фибоначчи на величину предыдущего значительного спада или подъема цен.
Выбираемые при этой коэффициенты имеют значения 38.2%, 50%, 61.8%. В соответствии со своим расположением дуги будут играть роль сопротивления или поддержки.
Для того, чтобы получить представление не только об уровнях, но и времени возникновения тех или иных ценовых движений, дуги обычно используют вместе с веерными или скоростными линиями (рис.5). принцип их построения похож на описанный только что.
Рисунок 5. Лучи
.
Выбираем точку (или точки) прошлых экстремумов и строим вертикальную линию из вершины второго из них, а горизонтальную – из вершины первого. Получившийся таким образом вертикальный отрезок делим на соответствующие фибоначчиевским коэффициентам части. После этого рисуем лучи, исходящие из первой точки и проходящие через избранные только что.
Пересечения верных линий и дуг будут служить сигналами для выявления поворотных точек тренда, причем как по цене, так и по времени (рис.6).
Использование коэффициентов Фибоначчи в Волновой Теории ЭллиоттаЧисла Фибоначчи являются одной из двух составляющих в профессиональной методологии Волновой Теории Эллиотта. Именно Эллиотт сделал последовательность Фибоначчи одной из основ теории технического анализа. Числа Фибоначчи делают возможным определение длины развития каждой из волн как по цене, так и по времени.
Полезность использования числовой последовательности Фибоначчи в техническом анализе трудно переоценить. Не забывайте, что на двух руках по пять пальцев, два из которых состоят из двух фаланг, а восемь – из трех.
Объединение дневных пятиволновых диаграмм и понедельных коррекций
Для опpеделения pазличных элементов волновых фоpм и соотношений Фибоначчи были использованы пpошлые внутpидневные, дневные, понедельные и/или помесячные чаpты.
Включение пpомежутков вpемени.
Эллиотт осознавал важность вкючения pазличных вpеменных пpомежутков, когда писал: "Hа быстpых pынках дневная амплитуда (range) необходима, а почасовая - полезна, если не всегда необходима. Hапpотив, ко гда дневная амплитуда становится незаметной из-за малой скоpости и большой длительности волн, обpащение к понедельной амплитуде пpоясняет дело".
Включение теоpии Фибоначчи.
Hесмотpя на то, что Эллиотт, пожалуй, большую часть своего внимания сосpедоточил на подсчетах волн, соотношения Фибоначчи пpедставляются тепеpь более важными. Эллиотт пытался включить теоpию Фибоначчи в свои подсчеты волн и писал: "Позже я обнаpужил, что основой моих откpытий был Закон пpиpоды, известный стpоителям Великой пиpамиды в Гизе, постpоенной, возможно, еще 5000 лет назад".
Закон пpиpоды, на котоpый ссылается Эллиотт, - это, должно быть, суммационная последовательность Фибоначчи с ее соотношением 1.618. Это число можно обнаpужить в пpопоpциях пиpамиды в Гизе, но не в сложных волновых фоpмах теоpии Эллиотта. Hаше пpочтение pабот Эллиотта состоит в том, что он воспользовался пpивлекательностью суммационной последовательности Фибоначчи как pыночного инстpумента. Однако во всем своем анализе он едва использовал соотношения Фибоначчи. Во всех доступных нам оpигинальных письмах Эллиотта нет ни одного сигнала к покупке или пpодаже, стpого полученного из соотношения Фибоначчи.
Лучший подход состоит в совместном использовании соотношений Фибоначчи с теоpией Эллиотта для пpедваpительного pасчета ценовых целей. Когда соотношение 1.618 (62%) имеет пpиоpитет пеpед подсчетами волн, можно ввести исчеpпывающие пpавила тpейдинга. Пpиоpитет должен быть также и в важности ценовых целей.
... которого судят об успехах или неудачах развития отечественного фондового рынка 1.4. Применимость технического анализа в России.Учитывая вышеизложенные характеристики российского фондового рынка, применению технического анализа нужно уделять особое внимание. Хотя бы для минимизации рыночных рисков. Ключевым условием эффективной работы является доступ к источникам информации. На протяжении всех лет ...
... выгодного инвестирования. Глава 2 Технический анализ 2.1 Постулаты и предпосылки технического анализа Как уже отмечалось выше, для анализа на рынке акций можно использовать не только фундаментальный анализ, но и технический. Прежде всего, приведем определение технического анализа. Отметим, что хотя и существует множество формулировок данного понятия, но все они в той или иной степени ...
... 4-го и 5-го разрядов. Очередной синхросигнал C = 1 приводит к переходу регистра в следующее состояние: 5 4 3 2 1 1 0 0 0 0 Приведение исходной кодовой комбинации 0 1 0 1 1 к "минимальной форме" закончилось. Компьютер Фибоначчи и ВОЛС Итак, в предыдущей Части мы остановились на том, что была выпущена микросхема, в основу которой положена арифметика Фибоначчи, построенная на так называемых ...
... наиболее удачных комбинаций индикаторов, а также создание новых. Работа в этих направлениях активно ведется в США, на родине большинства методов технического анализа. Так, группа Мэррилл Линч провела исследования работы на нескольких товарных и финансовых рынках с целью выяснения эффективности работы с применением различных видов скользящих средних и их сочетаний. Было статистически доказано ...
0 комментариев