3 Система взаимосвязанных уравнений – когда одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других – в правую.

y1=b12*y2+b13*y3+…+b1n*yn+a11*x1+a12*x2+…+a1m*xm+e1

y2=b21*y1+b23*y3+…+b2n*yn+a21*x1+a22*x2+…+a2m*xm+e2

yn=bn1*y1+bn2*y2+…+bnn-1*yn-1+an1*x1+an2*x2+…+anm*xm+en

Такая система уравнений называется структурной формой модели. Эндогенные переменные – взаимосвязанные переменные, которые определяются внутри модели (системы) у. Экзогенные переменные – независимые переменные, которые определяются вне системы х. Предопределенные переменные – экзогенные и лаговые (за предыдущие моменты времени) эндогенные переменные системы. Коэффициенты a и b при переменных – структурные коэффициенты модели. Система линейных функций эндогенных переменных от всех предопределенных переменных системы - приведенная форма модели.

где - коэффициенты приведенной формы модели.

Необходимое условие идентификации – выполнение счетного правила:

D+1=H –уравнение идентифицируемо;

D+1<H – уравнение неидентифицируемо;

D+1>H – уравнение сверхидентифицируемо.

Где Н – число эндогенных переменных в уравнении, D – число предопределенных переменных, отсутствующих в уравнении, но присутствующих в системе.

 Достаточное условие идентификации- определитель матрицы, составленной из коэффициентов при переменных, отсутствующих в исследуемом уравнении на равен нулю и ранг этой матрицы не менее эндогенных переменных без единицы. Для решения идентифицируемого уравнения применяется КМНК, для решения сверхидентифицируемых - двухшаговый МНК.

№20 КМНК. Применяется в случае точно идентифицируемой модели. Процедура применения КМНК предполагает выполнение следующих этапов: 1. Составляют приведенную форму модели и определяют численные значения параметров для каждого ее уравнения обычным МНК. 2. путем алгебраических преобразований переходят от приведенной формы к уравнениям структурной формы модели, получая тем самым численные оценки структурных параметров.


№21 ДВУХШАГОВЫЙ МНК. (ДМНК)

Основная идея ДМНК — на основе приведенной формы модели получить для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Далее, подставив их вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифи­цируемого уравнения. Метод получил название двухшагового МНК, ибо дважды используется МНК: на первом шаге при определении приведенной формы модели и нахождении на ее основе оценок теоретических значений эндогенной переменной

и на втором шаге применительно к структурному сверхидентифицируемому уравнению при опре­делении структурных коэффициентов модели по данным теоре­тических (расчетных) значений эндогенных переменных.

Сверхидентифицируемая структурная модель может быть двух типов:

•      все уравнения системы сверхидентифицируемы;

•      система содержит наряду со сверхидентифицируемыми точно
идентифицируемые уравнения.

Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения исполь­зуется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.

Применим ДМНК к простейшей сверхидентифицируемой

модели:

 

Данная модель может быть получена из предыдущей иденти­фицируемой модели:

 если наложить ограничения на ее параметры, а именно: b12 =a11

В результате первое уравнение стало сверхидентифицируемым: Н=1 (у1),

D=1(х2) и D+1 > Н. Второе уравнение не изме­нилось и является точно идентифицируемым: Н = 2 и D=1

На первом шаге найдем приведенную форму модели, а

именно:

ДМНК является наиболее общим и широко распространен­ным методом решения системы одновременных уравнений.  

Несмотря на важность системы эконометрических уравнений, на практике часто не принимают во внимание некоторые взаимосвязи, применение традиционного МНК к одному или нескольким уравнениям также широко распространено в эконометрике. В частности, при построении производственных функций анализ спроса можно вести, используя обычный МНК.

№22 ОСНОВНЫЕ ЭЛЕМЕНТЫ ВРЕМЕННОГО РЯДА.

Временной ряд — это совокупность значений какого-либо по­казателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

•      факторы, формирующие тенденцию ряда;

•      факторы, формирующие циклические колебания ряда;

•      случайные факторы.

При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы. Во-первых, большинство времен­ных рядов экономических показателей имеют тенденцию, харак­теризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправ­ленное воздействие на исследуемый показатель. Однако в сово­купности они формируют его возрастающую или убывающую тенденцию. Рис1

Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезон­ный характер, поскольку экономическая деятельность ряда от­раслей экономики зависит от времени года рис2 Некоторые временные ряды не содержат тенденции и цикли­ческой компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты. Рис3

 В большинстве случаев фактический уровень временного ря­да можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой вре­менной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в ко­торой временной ряд представлен как произведение перечислен­ных компонент, называется мультипликативной моделью времен­ного ряда. Основная задача эконометрического исследования от дельного временного ряда — выявление и придание количествен­ного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогно­зирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.

№23. АВТОКОРРЕЛЯЦИЯ УРОВНЕЙ ВРЕМЕННОГО РЯДА

 Корреляционную зависимость между последова­тельными уровнями временного ряда называют автокорреляцией уровней ряда. Количественно ее можно измерить с помощью линейного ко­эффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. Коэффициент корреляции имеет вид:

можно определить коэффициенты автокорреля­ции второго и более высоких порядков. Так, коэффициент авто­корреляции второго порядка характеризует тесноту связи между уровнями уt и yt-1  и определяется по формуле:

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорре­ляции, уменьшается.

Отметим два важных свойства коэффициента автокорреляции. Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда.

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уров­нях ряда.

Последовательность коэффициентов автокорреляции уров­ней первого, второго и т. д. порядков называют автокорреляцион­ной функцией временного ряда. График зависимости ее значений от величины лага на­зывается коррелограммой.


№24. МОДЕЛИРОВАНИЕ ТЕНДЕНЦИЙ ВРЕМЕННОГО РЯДА (АНАЛИТИЧЕСКОЕ ВЫРАВНИВАНИЕ ВРЕМЕННОГО РЯДА)

Одним из наиболее распространенных способов моделирова­ния тенденции временного ряда является построение аналитиче­ской функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим вы­равниванием временного ряда.

Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные ви­ды функций. Для построения трендов чаще всего применяются следующие функции:

•      линейный тренд:  

•      гипербола: ,

•      экспоненциальный тренд:  

•      тренд в форме степенной функции:

•      парабола второго и более высоких порядков:

Параметры каждого из перечисленных выше трендов можно определить обычным МНК, используя в качестве независимой переменной время t=1,2,..., n, а в качестве зависимой перемен- 1 ной — фактические уровни временного ряда yt . Существует несколько способов определения типа тенденции. К числу наиболее распространенных способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэф­фициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни уt и уt-1 тес­но коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, напри­мер, в форме экспоненты, то коэффициент автокорреляции пер­вого порядка по логарифмам уровней исходного ряда будет вы­ше, чем соответствующий коэффициент, рассчитанный по уров­ням ряда. Чем сильнее выражена нелинейная тенденция в изуча­емом временно м ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, если ряд содержит не­линейную тенденцию, можно осуществить путем перебора ос­новных форм тренда, расчета по каждому уравнению скорректи­рованного коэффициента детерминации R2 и выбора уравнения тренда с максимальным значением скорректированного коэффи­циента детерминации.

№;25. ММЕТОДЫ ИСКЛЮЧЕНИЯ ТЕНДЕНЦИЙ. МЕТОД ОТКЛОНЕНИЙ ОТ ТРЕНДА.

Сущность всех методов исключения тенденции заключается в том, чтобы устранить или зафиксировать воздействие фактора времени на формирование уровней ряда. Основные методы исклю­чения тенденции можно разделить на две группы:

•      методы, основанные на преобразовании уровней исходного
ряда в новые переменные, не содержащие тенденции. Полу­ченные переменные используются далее для анализа взаимо­связи изучаемых временных рядов. Эти методы предполага­ют непосредственное устранение трендовой компоненты Т из каждого уровня временного ряда. Два основных метода в
данной группе — это метод последовательных разностей и
метод отклонений от трендов;

•      методы, основанные на изучении взаимосвязи исходных
уровней временных рядов при элиминировании воздействия
фактора времени на зависимую и независимые переменные
модели. В первую очередь это метод включения в модель рег­рессии по временным рядам фактора времени.
Рассмотрим подробнее методику применения, преимущества и недостатки каждого из перечисленных выше методов. Метод отклонений от тренда

Пусть имеются два временных ряда xt и yt каждый из которых содержит трендовую компоненту Т и случайную компоненту е. Проведение аналитического выравнивания по каждому из этих рядов позволяет найти параметры соответствующих уравнений трендов и определить расчетные по тренду уровни  соответственно. Эти расчетные значения можно принять за оценку трендовой компоненты Т каждого ряда. Поэтому влияние тенденции можно устранить путем вычитания расчетных значений уровней ряда из фактических. Эту процедуру проделывают для каждого временного ряда в модели. Дальнейший анализ взаимосвязи ря­дов проводят с использованием не исходных уровней, а отклонений от тренда  и  при условии, что последние не содержат тенденции.

 

№26. МЕТОД ПОСЛЕДОВАТЕЛЬНЫХ РАЗНОСТЕЙ.

В ряде случаев вместо аналитического выравнивания времен­ного ряда с целью устранения тенденции можно применить более простой метод — метод последовательных разностей.

Если временной ряд содержит ярко выраженную линейную тенденцию, ее можно устранить путем замены исходных уровней ряда цепными абсолютными приростами (первыми разностями).

Пусть (1) ;

Тогда (6.3)Тогда

Коэффициент b — константа, которая не зависит от времени.

Если временной ряд содержит тенденцию в форме параболы второго порядка, то для ее устранения можно заменить исходные уровни ряда на вторые разности.

Пусть имеет место соотношение (1), однако

Тогда

Как показывает это соотношение, первые разности ∆t , непо­средственно зависят от фактора времени t и, следовательно, со­держат тенденцию.

Определим вторые разности:

Очевидно, что вторые разности ∆t2, не содержат тенденции, поэтому при наличии в исходных уровнях тренда в форме пара­болы второго порядка их можно использовать для дальнейшего анализа. Если тенденции временного ряда соответствует экспо­ненциальный или степенной тренд, метод последовательных раз­ностей следует применять не к исходным уровням ряда, а к их ло­гарифмам.

 

№27. ВКЛЮЧЕНИЕ В МОДЕЛЬ РЕГРЕССИИ ФАКТОРА ВРЕМЕНИ.

В корреляционно-регрессионном анализе устранить воздей­ствие какого-либо фактора можно, если зафиксировать воздейст­вие этого фактора на результат и другие включенные в модель факторы. Этот прием широко используется в анализе временных рядов, когда тенденция фиксируется через включение фактора времени в модель в качестве независимой переменной.

Модель вида относится к группе моделей, включающих фактор времени. Оче­видно, что число независимых переменных в такой модели может быть больше единицы. Кроме того, это могут быть не только те­кущие, но и лаговые значения независимой переменной, а также лаговые значения результативной переменной. Преимущество данной модели по сравнению с методами от­клонений от трендов и последовательных разностей в том, что она позволяет учесть всю информацию, содержащуюся в исход­ных данных, поскольку значения yt и хt есть уровни исходных временных рядов. Кроме того, модель строится по всей совокуп­ности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры а и b модели с включением фактора вре­мени определяются обычным МНК.  

Система нормальных уравнений имеет вид:


№28 .АВТОКОРРЕЛЯЦИЯ В ОСТАТКАХ. КРИТЕРИЙ ДАРБИНА-УОТСОНА.

Существуют два наиболее распространенных метода опреде­ления автокорреляции остатков. Первый метод — это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод — использо­вание критерия Дарбина — Уотсона и расчет величины

(1)

Таким образом, d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадра­тов по модели регрессии. Можно предположить что:  , предположим также

Коэффициент автокорреляции остатков оп­ределяется как

С учетом (3) имеем:

Таким образом, если в остатках существует полная положи­тельная автокорреляция и  , то d= 0. Если в остатках полная отрицательная автокорреляция, то  и, следовательно, d= 4.Если автокорреляция остатков отсутствует, то  и d = 2. Следовательно, 0≤d≤4

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина — Уотсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные ги­потезы Н1 Н1* состоят, соответственно, в наличии положитель­ной или отрицательной автокорреляции в остатках. Далее по спе­циальным таблицам определяются критичес­кие значения критерия Дарбина — Уотсона dl и du для заданного числа наблюдений n, числа независимых переменных модели к и уровня значимости α. По этим значениям числовой промежуток [0;4] разбивают на пять отрезков. Если фактическое значение критерия Дарбина — Уотсона по­падает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу Hо.

№29. ОБЩАЯ ХАРАКТЕРИСТИКА МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ. ИНТЕРПРИТАЦИЯ ПАРАМЕТРОВ МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ.

Величину L, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а временные ряды самих факторных переменных, сдвинутые на один ил более моментов времени, — лаговыми переменными.

 Эконометрическое моделирование осуществляется с применением моделей, содержащих не только текущие, но и лаговые значения факторных переменных. Эти модели называются моделями с распределенным лагом. Модель вида

является примером модели с распределенным лагом.

Наряду с лаговыми значениями независимых, или факторных, переменных на величину зависимой переменной текущего периода могут оказывать влияние ее значения в прошлые моменты или периоды времени. Эти процессы обычно описывают с помощью моделей регрессии, содержащих в качестве факторов лаговые значения зависимой переменной, которые называются моделями авторегрессии. Модель вида

относится к моделям авторегрессии. Построение моделей с распределенным лагом и моделей ав­торегрессии имеет свою специфику. Во-первых, оценка парамет­ров моделей авторегрессии, а в большинстве случаев и моделей с распределенным лагом не может быть произведена с помощью обычного МНК ввиду нарушения его предпосылок и требует спе­циальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в-третьих, между моделями с распределенным лагом и моделями авторегрессии су­ществует определенная взаимосвязь, и в некоторых случаях необ­ходимо осуществлять переход от одного типа моделей к другому. Интерпретация параметров моделей с распределительным лагом. Рассмотрим модель с распределенным лагом в ее общем виде в предположении, что максимальная величина лага конечна:

Эта модель говорит о том, что если в некоторый момент вре­мени t происходит изменение независимой переменной х, то это изменение будет влиять на значения переменной у в течение l следующих моментов времени.

Коэффициент регрессии b0 при переменной xt характеризует среднее абсолютное изменение уt при изменении хt на 1 ед. свое­го измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора x. Этот коэффици­ент называют краткосрочным мультипликатором.

В момент (t+1) совокупное воздействие факторной перемен­ной xt на результат уt, составит (b0 + b1) усл. ед., в момент (t+2) это воздействие можно охарактеризовать суммой (b0+b1+b2) и т. д. Полученные таким образом суммы называют промежуточными мультипликаторами.

 Введем следующее обозначение:

b0 +b1 +…+bl =b

Величину b называют долгосрочным мультипликатором. Он по­казывает абсолютное изменение в долгосрочном периоде t + l ре­зультата у под влиянием изменения на 1 ед. фактора х.

Предположим

ßj =bj/b, j=0:1

Назовем полученные величины относительными коэффициен­тами модели с распределенным лагом.  Сред­ний лаг определяется по формуле средней арифметической взве­шенной:  и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании резуль­тата на изменение фактора, тогда как высокое его значение гово­рит о том, что воздействие фактора на результат будет сказывать­ся в течение длительного периода времени. Медианный лаг — это величина лага, для которого

Это тот период времени, в течение которого с момента време­ни t будет реализована половина общего воздействия фактора на результат.

 

№ 30 МЕТОД АЛМОНА.

В методе А. предполагается ,что веса текущих лаговых значений объясняющих переменных подчиняются палениальному распределению. bj= c0 +c1j+ c2j2 +…+ ckjk

Уравнение регрессии примет вид yt = a+c0z0+c1z1+ c2z2 + ckzkt, где zi=; i=1,…,k; j=1,…,p. Расчет параметров модели с распределенным лагом проводится по следующей схеме:

1.           Устанавливается макси. величина лага l.

2.           Определяется степень паленома k,описывающего структуру лага.

3.           Рассчитывается значение переменных с z0 до zk.

4.           Определяются параметры уравнения линейной регрессии yt(zi).


Информация о работе «Шпоры по эконометрике»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 58626
Количество таблиц: 1
Количество изображений: 0

0 комментариев


Наверх