2. Pi—связная область, i= 1, 2, ..., п,

3. Ri Ri = для всех i и j, i j,

4. P(Ri) есть ИСТИНА для i= 1, 2, ..., n;

5. P(Ri U Ri) есть ЛОЖЬ для i j, где P(Ri)— логический предикат, определенный на точках из множества Ri, и -пу­стое множество.

Условие 1 означает, что сегментация должна быть полной, т. е. каждый пиксел должен находиться в образе. Второе усло­вие требует, чтобы точки в области были связными. Условие 3 указывает на то, что области не должны пересекать­ся. Условие 4 определяет свойства, которым должны удовлетво­рять пикселы в сегментированной области. Простой пример: Р(Ri) = ИСТИНА, если все пикселы в Ri имеют одинаковую интенсивность. Условие 5 означает, что области Ri и Ri разли­чаются по предикату Р.

2.3.2.Расширение области за счет объединения пикселов.

Расшире­ние области сводится к процедуре группирования пикселов или подобластей в большие объединения. Простейшей из них яв­ляется агрегирование пикселов. Процесс начинается с выбора множества узловых точек, с которых происходит расширение области в результате присоединения к узловым точкам сосед­них пикселов с похожими характеристиками (интенсивность, текстура или цвет). Пусть цифры внутри ячеек указывают интенсивность. Пусть точки с координатами (3, 2) и (3, 4) используются как узловые. Выбор двух начальных точек приведет к сегментации образа на две области: области R1, свя­занной с узлом (3, 2), и области R2, связанной с узлом (3, 4). Свойство Р, которое мы будем использовать для того, чтобы от­нести пиксел к той или иной области, состоит в том, что модуль разности между интенсивностями пиксела и узловой точки не превышает пороговый уровень Т. Любой пиксел, удовлетворяю­щий этому свойству одновременно для обоих узлов, произвольно попадает в область Ri. В этом случае сегментация проводится для двух областей, причем точки в R1 обозначаются буквой а, точки в R2 буквой b. Необходимо отметить, что независимо от того, в какой из этих двух областей будет взята начальная точка, окончательный результат будет один и тот же. Если, с другой сто­роны выбрать Т = 8, была бы получена единственная область

Предыдущий пример, не­смотря на его простоту, иллюстрирует некоторые важные проблемы расширения области. Двумя очевидными проблема­ми являются: выбор начальных узлов для правильного представления областей, представляющих интерес, и опреде­ление подходящих свойств для включения точек в различные области в процессе расшире­ния. Выбор множества, состоя­щего из одной или нескольких начальных точек, следует из по­становки задачи. Например, в военных приложениях объек­ты, представляющие интерес, имеют более высокую темпера­туру, чем фон, и поэтому про­являются более ярко. Выбор наиболее ярких пикселов явля­ется естественным начальным шагом в алгоритме процесса расширения области. При от­сутствии априорной информа­ции можно начать с вычисле­ния для каждого пиксела на­бора свойств, который навер­няка будет использован при установлении соответствия пик­села той или иной области в процессе расширения. Если ре­зультатом вычислений являют­ся группы точек (кластеры), тогда в качестве узловых бе­рутся те пикселы, свойства ко­торых близки к свойствам центроидов этих групп. Так, в примере, приведенном выше, гистограмма интенсивностей показала бы, что точки с интен­сивностью от одного до семи являются доминирующими. Выбор критерия подобия зависит не только от задачи, но также от вида имеющихся данных об образе. Например, анализ информации, полученной со спутников, существенно зависит от использования цвета. Задача анализа значительно усложнится при использовании только монохроматических образов. К сожа­лению, в промышленном техническом зрении возможность полу­чения мультиспектральных и других дополнительных данных об образе является скорее исключением, чем правилом. Обычно анализ области должен осуществляться с помощью набора дес­крипторов, включающих интенсивность и пространственные ха­рактеристики (моменты, текстуру) одного источника изображе­ния. Отметим, что применение только одних дескрипторов может приводить к неправильным результатам, если не используется информация об условиях связи в процессе расширения области. Это легко продемонстрировать при рассмотрении случайного рас­положения пикселов с тремя различными значениями интенсив­ности. Объединение пикселов в «область» на основе признака одинаковой интенсивности без учета условий связи приведет к бессмысленному результату при сегментаци.

Другой важной проблемой при расширении области является формулировка условия окончания процесса. Обычно процесс расширения области заканчивается, если больше не существует пикселов, удовлетворяющих критерию принадлежности к той или иной области. Выше упоминались такие критерии, как интен­сивность, текстура и цвет, которые являются локальными по своей природе и не учитывают «историю» процесса расширения области. Дополнительный критерий, повышающий мощность алгоритма расширения области, включает понятие размера, схо­жести между пикселом-кандидатом и только что созданными пикселами (сравнение интенсивности кандидата и средней ин­тенсивности области), а также формы области, подлежащей расширению. Использование этих типов дескрипторов основано на предположении, что имеется неполная информация об ожи­даемых результатах.

2.3.2.Разбиение и объединение области.

Изложенная выше про­цедура расширения области начинает работу с заданного мно­жества узловых точек. Однако можно сначала разбить образ на ряд произвольных непересекающихся областей и затем объ­единять и/или разбивать эти области с целью удовлетворения условий. Итеративные алгоритмы разбиения и объединения, работа которых направле­на на выполнение этих ограничений, могут быть изложены сле­дующим образом.

Пусть R является полной областью образа, на которой опре­делен предикат Р. Один из способов сегментации R состоит в успешном разбиении площади образа на все меньшие квадрат­ные области, так что для каждой области Ri, P(Ri) = ИСТИНА. Процедура начинает работу с рассмотрения всей области R. Если Р(R)= ЛОЖЬ, область разбивается на квадранты. Если для какого-либо квадранта Р принимает значение ЛОЖЬ, этот квадрант разбивается на подквадранты и т. д. Этот метод разбиения обычно представляется в виде так называемого квадродерева (дерева, у которого каждая вершина имеет только че­тыре потомка). Отметим, что корень дерева соответствует всему образу,а каждая вершина - разбиению. В данном случае только R4 подлежит дальнейшему разбиению. Если применять только опе­рацию разбиения, можно ожидать, что в результате окончатель­ного разбиения всей площади образа на подобласти последние будут иметь одинаковые свойства. Это можно устранить допу­стимым объединением так же, как и разбиением. Для того чтобы удовлетворить условиям сегментации, введенным выше, необ­ходимо объединять только те соседние области, пикселы которых удовлетворяют предикату Р, таким образом, две соседние обла­сти Ri и Rk объединяются только в том случае, если P(Ri U Rk) = ИСТИНА.

Изложенное выше можно представить в виде процедуры, где на каждом шаге выполняются следующие операции:

1. Разбиение области Ri, для которой Р {Ri) = ЛОЖЬ, на четыре непересекающихся квадранта.

2. Объединение соседних областей Ri и Rk, для которых Р (Ri U Rk) = ИСТИНА.

3. Выход на останов, когда дальнейшее объединение или разбиение невозможно.

Возможны варианты этого алгоритма. Например, можно сначала разбить образ на квадратные блоки. Дальнейшее разбиение выполняется по изложенному выше способу, но вначале объединение ограничивается группами из четырех бло­ков, являющихся в квадродереве потомками и удовлетворяю­щих предикату Р. Когда дальнейшее объединение этого типа становится невозможным, процедура завершается окончательным объединением областей согласно шагу 2. В этом случае объединяемые области могут иметь различный размер. Основ­ным преимуществом этого подхода является использование од­ного квадродерева для разбиения и объединения до шага, на котором происходит окончательное объединение.


2.4. Применение движения

Движение представляет собой мощное средство, которое ис­пользуется человеком и животными для выделения интересую­щих их объектов из фона. В системах технического зрения ро­ботов движение используется при выполнении различных операций на конвейере, при перемещении руки, оснащенной дат­чиком, более редко при перемещении всей робототехнической системы.

2.4.1.Основной подход.

Один из наиболее простых подходов для определения изменений между двумя кадрами изображения (образами) f(x, у, ti) и f(x, у, t,), взятыми соответственно в моменты времени ti и tj, основывается на сравнении соответ­ствующих пикселов этих двух образов. Для этого применяется процедура, заключающаяся в формировании так называемой разности образов.

Предположим, что мы имеем эталонный образ, имеющий только стационарные компоненты. Если сравним этот образ с таким же образом, имеющим движущиеся объекты, то разность двух образов получается в результате вычеркивания стацио­нарных компонент (т. е. оставляются только ненулевые записи, которые соответствуют нестационарным компонентам изобра­жения).

Разность между двумя кадрами изображения, взятыми в мо­менты времени ti и tj, можно определить следующим образом:


dij(x,y) = (*)


где —значение порогового уровня. Отметим, что dij(x, у) при­нимает значение 1 для пространственных координат (х, у) только в том случае, если два образа в точке с этими координа­тами существенно различаются по интенсивности, что опреде­ляется значением порогового уровня .

При анализе движущегося образа все пикселы изображений разности dij(x, у), имеющие значение 1, рассматриваются как результат движения объекта. Этот подход приметим только в том случае, если два образа зарегистрированы и освещен­ность имеет относительно постоянную величину в пределах границ, устанавливаемых пороговым уровнем . На практике записи в dij(x, у), имеющие значение 1, часто появляются в ре­зультате действия шума. Обычно на разности двух кадров изо­бражения такие значения выглядят как изолированные точки. Для их устранения применяется простой подход, заключающийся в формировании 4- или 8-связных областей из единиц в dij(x, у), и затем пренебрегают любой областью с числом записей, мень­шим заранее заданного. При этом можно не распознать малые и/или медленно движущиеся объекты, но это увеличивает ве­роятность того, что остающиеся записи в разности двух кадров изображения действительно соответствуют движению.

2.4.2.Аккумулятивная разность.

Как говорилось выше, разность кадров благодаря шуму часто содержит изолированные записи. Несмотря на то что число таких записей может быть сокращено или полностью ликвидировано в результате анализа связности пороговых уровней, этот процесс может также привести к по­тере изображений малых или медленно движущихся объектов. Ниже излагается подход для решения этой проблемы путем рассмотрения изменения в расположении пикселов на несколь­ких кадрах, т. е. в процесс вводится «память». Основная идея заключается в пренебрежении теми изменениями, которые воз­никают случайно в последовательности кадров и, таким образом, могут быть отнесены к случайному шуму.

Рассмотрим последовательность кадров изображения f(x,y,t1), f(x, у, t2), ..., f(x, у, tn) и допустим, что f(x, у, t1) является эталонным образом. Изображение аккумулятивной разности формируется в результате сравнения эталонного об­раза с каждым образом в данной последовательности. В процедуре построения изображения аккумулятивной разности имеется счетчик, предназначенный для учета расположения пик­селов. Его значение увеличивается каждый раз, когда возникает различие в расположении соответствующих пикселов эталон­ного образа и образа из рассматриваемой последовательности. Таким образом, когда k-й кадр сравнивается с эталонным, запись в данном пикселе аккумулятивней разности означает, во сколько раз интенсивность пиксела k-го кадра отличается от ин­тенсивности пиксела эталонного образа. Различия устанавли­ваются, например, с помощью уравнения (*).

Приведенные выше рассуждения иллюстрируются рисунке. На рисунке а—д приведены образы прямоугольного объекта (обозначенного нулями), движущегося вправо с постоянной ско­ростью 1 пиксел/кадр. Эти образы приведены в моменты вре­мени, соответствующие одному перемещению пиксела. На рис. (а) изображен кадр эталонного образа, на рис. (г) со 2-го по 4-й кадры последовательности, а на рис. (д)— 11-й кадр. Рис. (е— и) соответствуют изображениям аккумулятив­ной разности, которые можно объяснить следующим образом. На рис. (е) левая колонка из 1 обусловлена различием между объектом на рис. (а), и фоном на рис. (б). Правая колонка из 1 вызвана различием между фоном эталонного образа и пе­редним контуром движущегося объекта. Ко времени появления 4-го кадра (рис. г), первый ненулевой столбец изображе­ния аккумулятивной разности указывает на три отсчета, что со­ответствует трем основным различиям между этим столбцом в эталонном образе и соответствующим столбцом в последующих кадрах. На рис. и показано общее число из 10 (представ­ленных «A» в шестнадцатеричной системе счисления) изменений этого положения. Остальные записи на этом рисунке объясня­ются аналогично.

Нередко полезно рассматривать три типа изображений акку­мулятивной разности: абсолютное, положительное и отрица­тельное. Последние два получаются из уравнения (*), в котором нет модуля, а вместо f(x, у, ti) подставляется значение эталонного кадра. Предполагая, что числовые значения интен­сивности объекта превышают значения фона в случае, когда разность положительна, она сравнивается с положительным значением порогового уровня; если отрицательна, сравнение выполняется с отрицательным значением порогового уровня. Это определение заменяется на противоположное, если интенсив­ность объекта меньше фона.

Рис. Кадр эталонного образа (а), б—д соответственно 2-, 3-, 4- и 11-й кадры, е—и—изображения аккумулятивной разности для 2-, 3-, 4- и 11-го кадров .


9





10 00000000




11 00000000




12 00000000



a 13 00000000




14 00000000




15 00000000




16





9
9



10 00000000 10 1 1

11 00000000 11 1 1


12 00000000 12 1 1 е
б 13 00000000 13 1 1

14 00000000 14 1 1

15 00000000 15 1 1

16
16



9
9



10 00000000 10 21 21

11 0000000C 11 21 21
в 12 0000000C 12 21 21 ж

13 0000000C 13 21 21

14 00000000 14 21 21

15 00000000 15 21 21

16
16



9
9



10 00000000 10 321 321

11 00000000 11 321 321
г 12 00000000 12 321 321 з

13 00000000 13 321 321

14 00000000 14 321 321

15 00000000 15 321 321

16
16



9
9



10 00000000 10 A9876 5438887654321

11 00000000 11 A9876 5438887654321


12 00000000 12 A9876 5438887654321
д 13 00000000 13 A9876 5438887654321 и

14 00000000 14 A9876 5438887654321

15 00000000 15 A9876 543888.7654321

16
16



2.4.3.Определение эталонного образа.

Успех применения методов зависит от эталон­ного образа, относительно которого проводятся дальнейшие сравнения. Как уже говорилось выше, различие между двумя образами в задаче распознавания движущихся объектов опре­деляется путем исключения стационарных компонент при сохра­нении элементов, соответствующих шуму и движущимся объек­там. Проблема выделения образа из шума решается методом фильтрации или с помощью формирования изображения акку­мулятивной разности.

На практике не всегда можно получить эталонный образ, имеющий только стационарные элементы, и это приводит к не­обходимости построения эталона из набора образов, содержа­щих один или более движущихся объектов. Это особенно харак­терно для ситуаций, описывающих сцены со многими быстро­меняющимися объектами или в случаях, когда возникают частые изменения сцен. Рассмотрим следующую процедуру гене­рации эталонного образа. Предположим, что мы рассматриваем первый образ последовательности в качестве эталонного. Когда нестационарная компонента полностью вышла из своего положе­ния в эталонном кадре, соответствующий фон в данном кадре может быть перенесен в положение, первоначально занимаемое объектом в эталонном кадре. Когда все движущиеся объекты полностью покинули свои первоначальные положения, в резуль­тате этой операции воссоздается эталонный образ, содержащий только стационарные компоненты. Перемещение объекта можно определить с помощью операции расширения положительного изображения аккумулятивной разности.

3.ОПИСАНИЕ

В системах технического зрения проблемой описания назы­вается выделение свойств (деталей) объекта с целью распозна­вания. В идеальном случае дескрипторы не должны зависеть от размеров, расположения и ориентации объекта, но должны содержать достаточное количество информации для надежной идентификации объектов. Описание является основным резуль­татом при конструировании систем технического зрения в том смысле, что дескрипторы должны влиять не только на слож­ность алгоритмов распознавания, но также и на их работу. рассмотрим три основные катего­рии дескрипторов: дескрипторы границы, дескрипторы области и дескрипторы для описания трехмерных структур.

3.1.Дескрипторы границы. 3.1.1.Цепные коды.

Цепные коды применяются для представления границы в виде последовательности отрезков прямых линий определенной длины и направления. Обычно в основе этого представления лежит 4- или 8-связная прямоугольная решетка. Длина каждого отрезка определяется разрешением решетки, а направления задаются выбранным кодом. Отметим что для представления всех направлений в 4-направленном цеп­ном коде достаточно 2 бит, а для 8-направленного цепного кода требуется 3 бит. Для порождения цепного кода заданной границы сначала выбирается решетка. Тогда, если площадь ячейки, расположенной внутри границы, больше определенного числа (обычно 50%), ей присваивается значение 1; в противном слу­чае этой ячейке присваивается значение 0. Окон­чательно мы кодируем грани­цу между двумя областями, используя направления. Результат кодирования в на­правлении по часовой стрелке с началом в месте, помеченном точкой. Альтернативная процедура состоит в разбиении границы на участки равной длины (каждый участок имеет одно и то же число пикселов) и соединении граничных точек

каждого участка прямой линией, а затем присваивания каждой линии направления, ближайшего к одному из допустимых направлений цепного кода. Важно отметить, что цепной код данной границы зависит от начальной точки. Однако можно нормировать код с помощью простой процедуры. Для создания цепного кода начальная точка на решетке выбирается произвольным образом. Рассмат­ривая цепной код как замкнутую последовательность индексов направлений, мы вновь выбираем начальную точку таким обра­зом, чтобы результирующая последовательность индексов была целым числом, имеющим минимальную величину. Также можно нормировать повороты, если вместо цепного кода рассматри­вать его первую разность. Первая разность вычисляется в ре­зультате отсчитывания (в направлении против часовой стрелки)' числа направлений, разделяющих два соседних элемента кода. Например, первая разность для цепного кода с 4 направле­ниями 10103322 есть 3133030. Если рассматривать код как зам­кнутую последовательность, тогда первый элемент разности можно вычислить, используя переход между последним и пер­вым компонентами цепи. В данном примере результатом яв­ляется 33133030. Нормирование можно осуществить путем раз­биения всех границ объекта на одинаковое число равных сег­ментов и последующей подгонкой длин сегментов кода с целью их соответствия этому разбиению.

Изложенные методы нормирования являются точными толь­ко в том случае, когда сами границы инвариантны к повороту и изменению масштаба. Этот случай редко встречается на прак­тике. Например, один и тот же объект, разбитый на элементы в двух различных направлениях, как правило, имеет разную форму границы, причем степень различия пропорциональна раз­решающей способности изображения. Этот эффект можно умень­шить, если выбирать длины элементов цепи большими, чем рас­стояния между пикселами дискретного образа, или же выбирать ориентацию решетки вдоль главных осей кодируе­мого объекта.

3.1.2.Сигнатуры.

Сигнатурой называется одномерное функциональ­ное представление границы. Известно несколько способов соз­дания сигнатур. Одним из наиболее простых является построе­ние отрезка из центра к границе как функции угла. Очевидно, что такие сигнатуры зависят от периметра области и начальной точки. Нормирование периметра можно осуществить, пронормировав кривую r() максимальным значением. Пробле­му выбора начальной точки можно решить, определив сначала цепной код границы, а затем применив метод, изложенный в пре­дыдущем разделе. Конечно, расстояние, зависящее от угла, не является единственным способом определения сигнатуры. Напри­мер, можно провести через границу прямую линию и определить угол между касательной к границе и этой линией как функцию положения вдоль границы. Полученная сигнатура, хотя и от­личается от кривой r(), несет информацию об основных харак­теристиках формы границы. Например, горизонтальные участки кривой соответствовали бы прямым линиям вдоль границы, по­скольку угол касательной здесь постоянен. Один из вариантов этого метода в качестве сигнатуры использует так называемую функцию плотности наклона. Эта функция представляет со­бой гистограмму значений угла касательной. Поскольку гисто­грамма является мерой концентрации величин, функция плотно­сти наклона строго соответствует участкам границы с постоян­ными углами касательной (прямые или почти прямые участки и имеет глубокие провалы для участков, соответствующих быст­рому изменению углов (выступы или другие виды изгибов).

3.1.3.Аппроксимация многоугольниками.

Дискретную границу с произвольной точностью можно аппроксимировать многоуголь­никами. Для замкнутой кривой аппроксимация является точ­ной, когда число сегментов в многоугольнике равно числу точек границы, так что каждая пара соседних точек определяет сег­мент многоугольника. На практике целью аппроксимации мно­гоугольниками является качественное определение формы гра­ницы с помощью минимального числа многоугольных сегментов. Хотя обычно эта проблема нетривиальна и довольно быстро сво­дится к итеративному поиску, требующему больших временных затрат, имеется ряд методов аппроксимации многоугольниками, относительная простота которых и требования к обработке дан­ных делают их пригодными для приложений в области техниче­ского зрения роботов.

В задаче аппроксимации многоугольниками применяются методы объединения, основанные на ошибке или других крите­риях. Один из подходов состоит в соединении точек границы линией по методу наименьших квадратов. Линия проводится до тех пор, пока ошибка аппроксимации не превысит ранее задан­ный порог. Когда порог превышается, параметры линии зано­сятся в память, ошибка полагается равной нулю и процедура повторяется; новые точки границы соединяются до тех пор, пока ошибка снова не превысит порог. В конце процедуры образу­ются вершины многоугольника в результате пересечения сосед­них линий. Одна из основных трудностей, связанная с этим под­ходом, состоит в том, что эти вершины обычно не соответствуют изгибам границы (таким, как углы), поскольку новая линия начинается только тогда, когда ошибка превысит порог. Если, например, длинная прямая линия пересекает угол, то числом (зависящим от порога) точек, построенных после пересечения, можно пренебречь ранее, чем будет превышено значение поро­гового уровня. Однако для устранения этой трудности наряду с методами объединения можно использовать методы разбиения.

Один из методов разбиения сегментов границы состоит в по­следовательном делении сегмента на две части до тех пор, пока удовлетворяется заданный критерий. Например, можно потре­бовать, чтобы максимальная длина перпендикуляра, проведен­ного от сегмента границы к линии, соединяющей две крайние точки этого сегмента, не превышала ранее установленного зна­чения порогового уровня. Если это имеет место, наиболее даль­няя точка становится вершиной, разделяя, таким образом, исход­ный сегмент на два подсегмента. Этот метод обладает тем преи­муществом, что он адаптирован к наиболее подходящим точкам изгиба. Для замкнутой границы наилучшей начальной парой точек обычно являются точки, наиболее удаленные от границы.

3.2.Дескрипторы области

Область, представляющую интерес, можно описать формой ее границы или же путем задания ее характери­стик. Важно отметить, что методы, рассмот­ренные выше, применяются для описания областей.

3.2.1.Некоторые простые дескрипторы.

Существующие системы технического зрения основываются на довольно простых де­скрипторах области, что делает их более привлекательными с вычислительной точки зрения. Как следует ожидать, применение этих дескрипторов ограничено ситуациями, в которых представ­ляющие интерес объекты различаются настолько, что для их идентификации достаточно несколько основных дескрипторов.

Площадь области определяется как число пикселов, содер­жащихся в пределах ее границы. Этот дескриптор полезен при сборе информации о взаимном расположении и форме объектов, от которых камера располагается приблизительно на одном и том же расстоянии. Типичным примером может служить рас­познавание системой технического зрения объектов, движу­щихся по конвейеру.

Большая и малая оси области полезны для определения ориентации объекта. Отношение длин этих осей, называемое эксцентриситетом области, также является важным дескриптором для описания формы области.

Периметром области называется длина ее границы. Хотя иногда периметр применяется как дескриптор, чаще он исполь­зуется для определения меры компактности области, равной квадрату периметра, деленному на площадь. Отметим, что ком­пактность является безразмерной величиной (и поэтому инва­риантна к изменению масштаба) и минимальной для поверх­ности, имеющей форму диска.

Связной называется область, в которой любая пара точек может быть соединена кривой, полностью лежащей в этой об­ласти. Для множества связных областей (некоторые из них имеют отверстия) в качестве дескриптора полезно использовать число Эйлера, которое определяется как разность между числом связных областей и числом отверстий. Например, числа Эйлера для букв А и В соответственно равны 0 и —1. Другие дескрип­торы области рассматриваются ниже.

3.2.2.Текстура.

Во многих случаях идентификацию объектов или областей образа можно осуществить, используя дескрипторы текстуры. Хотя не существует формального определения тек­стуры, интуитивно этот дескриптор можно рассматривать как описание свойств поверхности (однородность, шероховатость, ре­гулярность). Двумя основными подходами для описания текстуры являются стати­стический и структурный. Статистические методы дают такие характеристики текстуры, как однородность, шероховатость, зер­нистость и т. д. Структурные методы устанавливают взаимное расположение элементарных частей образа, как, например, опи­сание текстуры, основанной на регулярном расположении па­раллельных линий.

3.2.3.Скелет области.

Важным подходом для описания вида струк­туры плоской области является ее представление в виде графа. Во многих случаях для этого определяется схема (скелет) об­ласти с помощью так называемых прореживающих (или же сокращающих) алгоритмов. Прореживающие процедуры иг­рают основную роль в широком диапазоне задач компьютерного зрения — от автоматической проверки печатных плат до под­счета асбестовых волокон в воздушных фильтрах. Скелет об­ласти можно определить через преобразование средних осей (ПСО), предложенное в работе. ПСО области R с грани­цей В определяется следующим образом. Для каждой точки р из R мы определяем ближайшую к ней точку, лежащую на В. Если р имеет больше одной такой точки, тогда о ней говорится, что она располагается на средней оси (скелете) области R. Важно отметить, что понятие «ближайшая точка» зависит от определения расстояния, и поэтому на результаты операции ПСО будет влиять выбор метрики. Хотя ПСО дает довольно удовлетворительный скелет обла­сти, его прямое применение затруднительно с вычислительной точки зрения, поскольку требуется определение расстояния между каждой точкой области и границы. Был предложен ряд алгоритмов построения средних осей, обладающих большей вычислительной эффективностью. Обычно это алгоритмы про­реживания, которые итеративно устраняют из рассмотрения точки контура области так, чтобы выполнялись следующие ограничения:

1) не устранять крайние точки;

2) не приводить к нарушению связности;

не вызывать чрезмерного размывания области.


4.СЕГМЕНТАЦИЯ И ОПИСАНИЕ ТРЕХМЕРНЫХ СТРУКТУР

В предыдущих двух разделах основное внимание уделялось методам сегментации и описания двумерных структур. В этом разделе мы рассмотрим эти задачи применительно к трехмер­ным данным сцены.

По существу зрение яв­ляется трехмерной проблемой, поэтому в основе разработки многофункциональных систем технического зрения, пригодных для работы в различных средах, лежит процесс обработки информации о трехмерных сценах. Хотя исследования в этой области имеют более чем 10-летнюю историю, такие факторы, как стоимость, скорость и сложность, тормозят внедрение обра­ботки трехмерной зрительной информации в промышленных приложениях.

Возможны три основные формы представления информа­ции о трехмерной сцене. Если применяются датчики, измеряю­щие расстояние, то мы получаем координаты (х, у, z) точек поверхностей объектов. Применение устройств, создающих сте­реоизображение, дает трехмерные координаты, а также инфор­мацию об освещенности в каждой точке. В этом случае каждая точка представляется функцией f (х, у, z), где значения послед­ней в точке с координатами (х, у, z) дают значения интенсив­ности в этой точке (для обозначения точки в трехмерном про­странстве и ее интенсивности часто применяется термин вок сел). Наконец, можно установить трехмерные связи на основе одного двумерного образа сцены, т. е. можно выводить связи между объектами, такие, как «над», «за», «перед». Поскольку точное трехмерное расположение точек сцены обычно не может быть вычислено на основе одного изображения, связи, полу­ченные с помощью этого вида анализа, иногда относятся к так называемой 2,5-мерной информации.

4.1.Описание трехмерной сцены плоскими участками

Один из наиболее простых подходов для сегментации и опи­сания трехмерных структур с помощью координат точек (х, у, z) состоит в разбиении сцены на небольшие плоские «участки» с последующим их объединением в более крупные элементы поверхности в соответствии с некоторым критерием. Этот метод особенно удобен для идентификации многогранных объектов, поверхности которых достаточно гладкие относительно разрешающей способности.

4.2. Применение градиента

Когда сцена задана вокселами, ее можно описать плоскими участками с помощью трехмерного градиента. В этом случае дескрипторы поверхности также получаются в результате объединения этих плоских участков. Вектор градиента указывает направление максимальной скорости из­менения функции, а его величина соответствует величине этого изменения. Эти понятия применимы для трехмерного случая и также могут быть использованы для разбиения на сегменты трехмерных структур тем же способом, который применялся для двумерных данных.

4.3. Разметка линий и соединений

Итак, контуры в трехмерной сцене определяются разры­вами в данных о координатах и/или интенсивности. После того как был определен набор поверхностей и контуров, распола­гающихся между ними, окончательное описание сцены может быть получено путем разметки линий, которые соответствуют контурам, и соединений, которые эти контуры образуют.

Выпуклая линия (помеченная +) образуется в результате пересечения двух поверхностей выпуклого тела (например, линия, образо­ванная в результате пересечения двух сторон куба). Вогнутая линия (помеченная —) образуется в результате пересечения двух поверхностей, принадлежащих двум различным телам (например, пересечение стороны куба с полом). Скрытые ли­нии (помеченные стрелками) представляют собой контуры не­видимых поверхностей. Поверхности, закрывающие другие части объекта, располагаются справа направлении стрелок, а невидимые слева. После того как линии сцены дают ключ к пониманию природы трехмерных объ­ектов сцены. Физические ограничения допускают лишь несколько возмож­ных комбинаций меток линий в соединении. На­пример, сцена в виде мно­гогранника не имеет ли­ний, метки которых могут меняться между вершина­ми. Нарушение этого пра­вила приводит к объек­там, не имеющим физиче­ского смысла.

4.4. Обобщенные конусы

Обобщенным конусом (или цилиндром) называется поверх­ность, получаемая в результате перемещения плоского попереч­ного сечения вдоль произвольной пространственной кривой (хребта) под постоянным к ней углом, причем поперечное се­чение преобразуется по правилу заметания объема. В техниче­ском зрении метод обобщенных конусов независимо от других методов позволяет создавать образы трехмерных структур, что полезно при моделировании и для проверки соответствия по­строенных моделей исходным данным.

5.Распознавание

Распознаванием называется процесс разметки, т.е. алгоритмы распознавания идентифицируют каждый объект сцены и присваивают ему метки (гаечный ключ, перемычка). Обычно в большинстве промышленных систем технического зрения предполагается, что объекты сцены сегментированы как отдельные элементы. Другое общее ограничение относится к расположению устройств сбора информации относительно исследуемой сцены (обычно они располагаются перпендикулярно рабочей поверхности). Это приводит к уменьшению отклонений в характеристиках формы, а также упрощает процесс сегментации и описания в результате уменьшения вероятности загораживания одних объектов другими. Управление отклонениями в ориентации объекта производится путем выбора дескрипторов, инвариантных к вращению, или путем использования главных осей объекта для ориентирования его в предварительно определенном направлении.

Современные методы распознавания делятся на две основные категории: теоретические и структурные методы. Теоретические методы основываются на количественном описании (статическая структура), а в основе структурных методов лежат символические описания и их связи (последовательности направлений в границе, закодированной с помощью цепного кода).


6.Интерпретация

Интерпретацию - про­цесс, который позволяет системе технического зрения приоб­рести более глубокие знания об окружающей среде по сравне­нию со знаниями, полученными с помощью методов, изложенных выше. Рассматриваемая с этой точки зрения интерпретация охватывает данные методы как неотъемлемую часть процесса понимания зрительной сцены. Хотя в области технического зре­ния она и является объектом активных исследований, достиже­ния пока весьма незначительны. Ниже мы кратко рассмотрим проблемы, представляющие современные исследования в этой области технического зрения.

Мощность системы технического зрения определяется ее способностью выделять из сцены значимую информацию при различных условиях наблюдения и использовании минимальных знаний об объектах сцены. По ряду причин (неравномерное освещение, наличие тел, загораживающих объекты, геометрии наблюдения) этот тип обработки представляет трудную задачу. Много внимания уделено методам уменьшения раз­броса в интенсивности. Способы обратного и структурирован­ного освещения позволяют устра­нить трудности, связанные с произвольным освещением ра­бочего пространства. К этим трудностям относятся теневые аффекты, усложняющие процесс определения контуров, и неодно­родности на гладких поверхностях. Это часто Приводит к тому, что они распознаются как отдельные объекты. Очевидно, многие из этих проблем обусловлены тем, что относительно мало из­вестно о моделировании свойств освещения и отражения трех­мерных сцен. Методы разметки линий и соединений представляют собой некоторые попытки в этом направлении, но они не в состоянии количественно объяснить эффекты взаимодействия освещения и отражения. Более пер­спективный подход основан на математических моделях, опи­сывающих наиболее важные связи между освещением, отраже­нием и характеристиками поверхности, такими, как ориентация.

Проблема загораживания одних объектов другими имеет ме­сто, когда рассматривается большое число объектов в реальном рабочем пространстве. Даже если бы система была способна идеально выделить группу объектов из фона, то все ранее рассмотренные двумерные про­цедуры описания и распознавания дали бы плохой результат для большинства загороженных объектов. Применение трех­мерных дескрипторов было бы более успешным, но даже они дали бы неполную информацию.

Для обработки сцен требуются описания, которые должны содержать информацию о формах и объемах объектов, а также процедуры для установления связей между этими описаниями, даже когда они не яв­ляются полными. Несомненно, эти проблемы будут решены только путем разработки методов, позволяющих обрабатывать трехмерную информацию (полученную либо в результате не­посредственных измерений, либо с помощью геометрических ме­тодов вывода) и устанавливать (необязательно количественно) трехмерные связи на основе информации об интенсивности образа.

Знание о том, в каких случаях интерпретация сцены или части сцены является невоз­можной, так же важно, как и правильный анализ сцены. Про­смотр сцены из различных точек решил бы эту проблему и был бы естественной реакцией интеллектуального наблюдателя.

В этом направлении одним из наиболее перспективных под­ходов являются исследования в области технического зрения, основанного на моделях . Основной идеей метода является интерпретация сцены на основе обнаружения отдельных слу­чаев соответствия между данными образа и трехмерными мо­делями простейших объемных элементов или же целых объек­тов, представляющих интерес. Зрение, основанное на трехмер­ных моделях, имеет другое важное преимущество: оно дает воз­можность обрабатывать несоответствия в геометрии наблю­дения. Изменчивость образа объекта, наблюдаемого из раз­личных положений, является одной из наиболее серьезных проб­лем технического зрения. Даже для двумерных случаев, где определена геометрия наблюдения, ориентация объекта может сильно влиять на процесс распознавания, если он не управ­ляется соответствующим образом. Одно из преимуществ подхода, основанного на моделях, состоит в том, что в зависимости от известной геометрии наблюдения можно подбирать ориентацию трехмерных моделей с целью упрощения соответствия между неизвестным объектом и тем, что система видит из данной точки наблюдения.


7.Выводы

Основное внимание уделено понятиям и методам технического зрения, применяемым в промышленных приложениях. Сегментация является одним из наиболее важных процессов на ранней стадии распознавания образов системой технического зрения. Следующей задачей системы технического зрения является образование набора дескрипторов, который полностью идентифицирует объекты определенного класса. Обычно стремятся выбирать дескрипторы, наименее зависящие от размеров объекта, его ориентации и расположения. Хотя зрение и является трехмерной задачей, большинство современных промышленных систем работает с данными, которые часто упрощаются с помощью методов специального освещения или строго определенной геометрии наблюдения. Сложности возникают, когда эти ограничения ослабляются.

По существу зрение яв­ляется трехмерной проблемой, поэтому в основе разработки многофункциональных систем технического зрения, пригодных для работы в различных средах, лежит процесс обработки информации о трехмерных сценах. Хотя исследования в этой области имеют более чем 10-летнюю историю, такие факторы, как стоимость, скорость и сложность, тормозят внедрение обра­ботки трехмерной зрительной информации в промышленных приложениях. Мощность системы технического зрения определяется ее способностью выделять из сцены значимую информацию при различных условиях наблюдения и использовании минимальных знаний об объектах сцены. По ряду причин (неравномерное освещение, наличие тел, загораживающих объекты, геометрии наблюдения) этот тип обработки представляет трудную задачу. К этим трудностям относятся теневые аффекты, усложняющие процесс определения контуров, и неодно­родности на гладких поверхностях. Это часто приводит к тому, что они распознаются как отдельные объекты. Очевидно, многие из этих проблем обусловлены тем, что относительно мало из­вестно о моделировании свойств освещения и отражения трех­мерных сцен. Методы разметки линий и соединений представляют собой некоторые попытки в этом направлении, но они не в состоянии количественно объяснить эффекты взаимодействия освещения и отражения. Более пер­спективный подход основан на математических моделях, опи­сывающих наиболее важные связи между освещением, отраже­нием и характеристиками поверхности, такими, как ориентация.

Проблема загораживания одних объектов другими имеет ме­сто, когда рассматривается большое число объектов в реальном рабочем пространстве. Даже если бы система была способна идеально выделить группу объектов из фона, то все ранее рассмотренные двумерные про­цедуры описания и распознавания дали бы плохой результат для большинства загороженных объектов. Применение трех­мерных дескрипторов было бы более успешным, но даже они дали бы неполную информацию.

Разработка методов обра­ботки трехмерной зрительной информации в роботизированных и автоматизированных системах в настоящее время задача актуальная, так как такие факторы, как стоимость, скорость, сложность вычислений, трудность реализации алгоритмов делают неприемлемыми многие уже существующие методы.


Список литературы

Анисимов Б.В., Курганов В.Д. Распознавание и цифровая обработка изображений.

Гонсалиес, Фу, Ли. Робототехника.

Катыс Г.П. Техническое зрение роботов.


Содержание


Техническое зрение роботов 1

1.ВВЕДЕНИЕ 1

2.СЕГМЕНТАЦИЯ 2

2.1.Проведение контуров и определение границы 2

2.1.1.Локальный анализ. 3

2.1.2.Глобальный анализ с помощью преобразования Хоуга. 4

2.2.Определение порогового уровня 7

2.2.1.Глобальные и локальные пороги. 8

2.2.3.Определение порогового уровня на основе характеристик границы. 10

2.2.4.Определение порогового уровня, основанное на нескольких переменных. 12

2.3.Областно-ориентированная сегментация 13

2.3.1.Основные определения. 13

2.3.2.Разбиение и объединение области. 16

2.4. Применение движения 17

2.4.1.Основной подход. 17

2.4.2.Аккумулятивная разность. 19

2.4.3.Определение эталонного образа. 21

3.ОПИСАНИЕ 22

3.1.Дескрипторы границы. 23

3.1.1.Цепные коды. 23

3.1.2.Сигнатуры. 24

3.1.3.Аппроксимация многоугольниками. 25

3.2.Дескрипторы области 26

3.2.1.Некоторые простые дескрипторы. 26

3.2.2.Текстура. 27

3.2.3.Скелет области. 28

4.СЕГМЕНТАЦИЯ И ОПИСАНИЕ ТРЕХМЕРНЫХ СТРУКТУР 29

4.1.Описание трехмерной сцены плоскими участками 29

4.2. Применение градиента 30

4.3. Разметка линий и соединений 30

4.4. Обобщенные конусы 31

5.Распознавание 31

6.Интерпретация 32

7.Выводы 34


Список литерату


Информация о работе «Техническое зрение роботов»
Раздел: Технология
Количество знаков с пробелами: 58736
Количество таблиц: 1
Количество изображений: 12

Похожие работы

Скачать
11221
3
11

... можно уменьшить в два раза. Для tц = 200 нс; Т = 5,4 мс. Рисунок 6 ¾ Организация блока счётчиков   4. Реализация СТЗ на базе однокристального микропроцессора (КР1810) технический зрения микропроцессор аппаратный Рассмотрим пример реализации СТЗ при использовании в качестве ВУ микропроцессора КР1810 ВМ8 При разработке будем использовать общий алгоритм рис.2. Разработка структуры ...

Скачать
49971
0
0

... автоматизации приводит лишь к их дискредитации. На развитие роботизации как нового научно-технического направления несомненно повлияло и то обстоятельство, что первоначально созданием промышленных роботов стали заниматься специалисты по вычислительной технике, технической кибернетике и т. д., которые ранее производственными вопросами автоматизации не занимались и вполне искренне верили, что ...

Скачать
70209
0
19

... по отношению к системе имитационного моделирования цепочка – человек с приобщением вспомогательных средств и методов программного обеспечения [11]. При этом исследователь-проектировщик выполняет функцию преобразования информации, которая состоит в интерпретации результатов и принятия решений относительно управления экспериментами и обобщением информации к базе знаний интеллектуального робота. ...

Скачать
36215
0
8

... и военном деле. В данной курсовой работе я попытаюсь разработать шагающего робота для разминирования. 2 Анализ технического задания Техническим заданием на данный курсовой проект является разработка робота для разминирования различных технических объектов. Характеристики данного технического проекта могут быть достигнуты за наличием экономических условий, а так же при условии наличия ...

0 комментариев


Наверх