4. Анализ и обоснование схем электрической сети

 

Рассмотрим схемы электрических сетей заданного района, а также проанализируем их достоинства и недостатки, с тем чтобы выбрать наилучшие варианты для технико-экономического сравнения. Схемы замещения для трех рассматриваемых вариантов приведены на рисунке 4.1.

10

 

Рис. 4.1.а Схема электроснабжения по варианту 1

 

ТДН-16000/110

 

П/ст “в”

 

п/ст “а”

 

п/ст “г”

 

ТДН-40000/110

 

п/ст “д”

 

ТДН-10000/110

 

п/ст “б”

 

 

 

ИП

 
Вариант 1

ТРДН-40000/220

 

ТРДЦН-100000/110

 

11

 
Вариант 2

ТРДЦН-100000/220

 

ТРДН-40000/220

 

ИП

 

 

 

п/ст “б”

 

ТДН-10000/110

 

п/ст “д”

 

ТДН-40000/110

 

п/ст “г”

 

п/ст “а”

 

П/ст “в”

 

ТДН-16000/110

 

Рис. 4.1.б Схема электроснабжения по варианту 2

 












































12

 

14

 
Силовые выключатели по стороне низкого напряжения на подстанциях схем всех вариантов смонтированы в ячейках КРУ с выкатными элементами (на схемах не показаны). Для увеличения надежности трансформаторы подстанций ГПП схем всех вариантов подключены к разным секциям источника питания.

При разработке схем предполагается, что мощность источника питания достаточна для покрытия нагрузок района и вопросы поддержания частоты не рассматриваются.

Проведем сравнение вариантов по упрощенным показателям. Проанализируем длины трасс, цепей и суммарный момент активной мощности. Результаты представлены в таблице 4.1.


Таблица 4.1. Сравнение вариантов по упрощенным показателям

Вариант Длина трасс,км Длина цепей,км Суммарн. момент мощности, Мвт×км
1 196 233 ***
2 139 278 3151
3 161 322 3481

Для варианта 1 значение суммарного момента мощности не имеет физического смысла. Как следует из таблицы 4.1. схема варианта 2 имеет лучший показатель момента мощности по сравнению со схемой варианта 3.

Установим распределение потоков мощности в элементах сети для каждого из вариантов с учетом потерь мощности .

 

Рассмотрим отдельно схему кольца в варианте 1. Развернутая схема замещения изображена на рис.4.2.


Рис.4.2. Развернутая схема замещения кольца по варианту 1

Определим приближенное потокораспределение в кольце с целью выявления точки потокораздела.

Расчеты показывают, что п/ст “в” является точкой потокораздела мощности.

Проверим правильность определения точки потокораздела мощности на головных линиях кольца по условию:



Определим мощность, поступающую с шин электростанции с учетом потерь мощности. Для этого ”разрежем” кольцо в точке потокораздела ( см. рис 4.3).


ИП

 

ИП

 

Sa Sв Sг

 





lИП-а=50 км

 

lа-в=27 км

 

lв-г=40 км

 

lг-ИП=42 км

 
Рис.4.3. Преобразование исходной схемы замещения по варианту 1

На рисунке 4.3. имеют место следующие обозначения:

S - мощность в начале линии;

S" - мощность в конце линии.

Нагрузки в узлах “в¢” и “в²” равны

Определим потоки мощности в линиях схемы с учетом потерь.

Потери мощности в линии определяются по формуле

где P - активная составляющая мощности в конце линии, МВт;

Q - реактивная составляющая мощности в конце линии, МВАр;

Uном - номинальное напряжение линии, кВ;

r0= 0,2 Ом/км - усредненное активное сопротивление линии (по [1]);

x0 = 0,42 Ом/км - усредненное реактивное сопротивление;

l - длина линии, км.

Мощность в начале линии определяется как

Потоки мощностей с учетом потерь для линий ИП-б и ИП-д определяются аналогично.

В двухцепных линиях потоки мощности вначале линии определяем на одну цепь для последующего расчета тока и сечения провода (т.е. предполагая, что на одну цепь двухцепной линии приходится половина передаваемой мощности).

Зарядную мощность линий на данном этапе проектирования не учитываем, т.к. нам неизвестны марка проводов и удельные реактивные проводимости линий b0 .

16

 
Результаты расчетов потоков мощностей для схем всех вариантов приведены в таблице 4.2.

Таблица 4.2. Расчет потоков мощностей с учетом потерь для схем всех вариантов

 

Вариант Участок сети

Мощность в конце линии S¢¢, МВА

Мощность в начале линии S¢,

МВА

Потери мощности

DS,

МВА

Акт. cоставл.

Реакт.

cоставл.

Акт. cоставл.

Реакт.

cоставл.

Акт. cоставл.

Реакт.

cоставл.

ИП-а 45,83 21,71 47,93 26,17 2,1 4,46
а-в 10,77 5,83 10,837 5,97 0,067 0,14
в-г 21,22 11,08 21,6 11,87 0,37 0,79
I ИП-г 41,22 20,76 64,46 37,34 3,24 6,8
ИП-б 30,0 12,77 30,77 13,76 0,47 1,0
ИП-д 80,0 29,03 81,2 31,54 1,19 2,51
ИП-а 35,0 15,94 36,2 18,48 1,21 2,55
ИП-д 80,0 29,03 81,2 31,54 1,19 2,51
II ИП-б 82,0 37,94 85,6 45,58 3,63 7,64
б-в 32,0 15,49 32,56 16,6 0,56 1,18

 

5.Технико-экономическое обоснование вариантов. Выбор и обоснование оптимального варианта электрической сети.

 

Данный раздел проекта является основным. Из отобранных по результатам предварительного анализа трех вариантов необходимо выбрать наивыгоднейший.

Определим сечение проводов ЛЭП. Для электрических сетей и линий электропередач до 220 кВ включительно оно выбирается по экономической плотности тока jЭК (по табл. 8 [1]) из соотношения

 , мм2

где  - расчетный ток соответствующий максимуму нагрузки, в нормальном режиме работы;

S¢ - мощность в начале линии.

17

 
По таблице 8 [1] определяем значения экономической плотности тока для каждой из подстанций

jэка = 1,1 А/мм2;

jэкб = 1,0 А/мм2 ;

jэкв = 1,1 А/мм2;

jэкг = 1,0 А/мм2;

jэкд = 1,1 А/мм2.

 

Определим расчетные токи и сечения проводов линий для каждого из вариантов схем электрических сетей (по [4]). Результаты расчетов сведены в таблицу 5.1.

Таблица 5.1. Определение расчетных токов в линиях, сечений и марки проводов линий

Вар. Участок сети Номинальное напряжение, кВ Кол-во линий Макс. рабочий ток на одну цепь, А

Эконом. плотность тока,

А/мм2

Расчетно-экон. сечение провод,

мм2

Принятый стандартный провод

Послеаварийный ток,

А

Допустимый по нагреву ток, А
ИП - а 230 2 213,95 1,1 194,5 АС-240 427,9 605

 

а - г 230 2 139,46 1,0 139,46 АС-240 278,9 605

 

I ИП - б 115 2 35,44 1,1 32,21 АС-70 70,88 265

 

ИП - в 115 2 147,66 1,0 147,66 АС-150 295,3 450

 

в - д 115 2 99,84 1,1 90,76 АС-95 199,68 330

 

ИП - а 230 2 213,95 1,1 144,75 АС-240 144,75 605

 

а - г 230 2 139,46 1,0 139,46 АС-240 139,46 605

 

II ИП - в 115 2 183,1 1,0 183,1 АС-185 188,1 510

 

в - б 115 2 35,44 1,1 35,44 АС-70 32,21 265

 

в - д 115 2 99,84 1,1 99,84 АС-95 90,76 330

 

 

Далее произведем сравнение вариантов по минимуму приведенных затрат.

При сооружении всей сети в течении одного года и одинаковой степени надежности приведенные затраты каждого из вариантов определяются как

З = РН К + И,

 

где К - единовременные капиталовложения в данный вариант сети, тыс.руб;

18

 
И - ежегодные эксплуатационные расходы, тыс.руб;

РН = 0,15 - нормативный коэффициент эффективности капиталовложений.

Капиталовложения включают в себя затраты на сооружение линий КЛ и понизительных подстанций КП/СТ . В капитальные затраты КП/СТ входят стоимость оборудования подстанции (стоимость ячеек выключателей на стороне высокого напряжения или другого коммутационного оборудования и трансформаторов) и постоянная часть затрат.

Ежегодные эксплуатационные расходы И имеют три составляющие: отчисление на амортизацию И1, ремонт и обслуживание И2, стоимость потерь электроэнергии И3.

Стоимость потерь электроэнергии определяется как

И3 = DА×b ,

 

где DА - потери электроэнергии в сети, кВт×ч;

b = 100 руб/кВт×ч - удельная стоимость потерь электроэнергии.

Потери электроэнергии в сети суммируются из потерь в линиях и потерь в трансформаторах.

Укрупненные показатели ЛЭП и прочего электрооборудования определяем по справочнику [4]. Результаты расчетов сведены в таблицу 5.2.

Таблица 5.2. Укрупненные показатели электрооборудования схем всех вариантов

 

Вариант Кап затраты, млн. руб. Эксплуатационные показатели, млн.руб.

Приведенные затраты,

млн.руб.

КЛ

КП/СТ

КS

И1

И2

И3

ИS

З
I 3768 2917 6685 259,62 102,58 354,5 616,66 1619,41
II 3768 2917 6685 259,62 102,58 452,6 814,45 1817,2

Из данной таблицы видно, что наименьшие приведенные затраты приходятся на схему электроснабжения по варианту 1, т.е. данный вариант является оптимальным по экономическим показателям.


Информация о работе «Электрические сети и системы»
Раздел: Технология
Количество знаков с пробелами: 30991
Количество таблиц: 19
Количество изображений: 4

Похожие работы

Скачать
38274
17
13

...           КП.1001.128.07.34.ПЗ                     Изм Лист № докум. Подпись Дата Электрическая сеть района системы 110кВ Литера Лист Листов Разраб. Демченко В.     Руковод. Озина Н.В.     НЭТ       ...

Скачать
20759
12
0

... экологически чистым, и продление сроков службы оборудования высокого давления путем замены выработавших свой ресурс узлов и деталей. Серьезная проблема для всех стран СНГ - старение оборудования электростанций и электрических сетей. Более 60% оборудования эксплуатируется свыше 15 лет, в том числе более 40% свыше 25 лет. Срок службы части электрических сетей превышает 30 лет. [ 5 , стр. ...

Скачать
45048
21
7

... = 1,45 = 33,1/16=2,07 В этой главе было составлено четыре варианта схем сети, из которых выбрали два наиболее рациональных, исходя из требований надежности к электрической сети. Для выбранных вариантов выбрали напряжения каждой линии, сечение проводов, трансформаторы. 5. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ НАИБОЛЕЕ РАЦИОНАЛЬНОГО ВАРИАНТА   Для выбора лучшего варианта схемы сети из двух, для ...

Скачать
23151
9
19

... нагрузки по подстанциям Расчеты выполняются по следующим соотношениям: (1.1.)   (1.2.) Таблица1. Параметры потребителей электрической сети № Максимальный режим Минимальный режим U1 110 кВ U2 35 кВ U3 10 кВ U1 110 кВ U2 35кВ U3 10 кВ P Q S P  Q S P Q S P Q S P Q S P Q S МВт МВар ...

0 комментариев


Наверх