2.2.3 Геотермальная энергия.

Тепло от горячих горных пород в земной коре тоже может генерировать электричество. Через пробуренные в горной породе скважины вниз накачивается холодная вода, а в вверх поднимается образованный из воды пар, который вращает турбину.

За прошедшие 15 лет производство электроэнергии на геотермальных электростанциях (ГеоТэс) в мире значительно выросло. В последние два десятилетия выполнялись обширные программы научно-исследовательских, опытно-конструкторских и технологических работ в этом направлении. Накоплен также определенный опыт создания и многолетней эксплуатации опытно-промышленных и промышленных геотермальных установок различного назначения.

Современное развитие геотермальной энергетики предполагает экономическую целесообразность использования следующих видов подземных геотермальных вод:

-     температурой более 140°С и глубиной залегания до 5 км для выработки электроэнергии;

-     температурой около 100°С для систем отопления зданий и сооружений;

-     температурой около 60-70°С для систем горячего водоснабжения;

-     геотермальные холодильные установки;

-     системы геотермального теплоснабжения теплиц.

ГеоТЭЦ позволит получать дополнительно 760-1010 млн. кВт/ч электроэнергии в год.

Использование теплоты геотермальных вод в Республике Казахстан, как и во всем мире, представляет пока еще определенную сложность, связанную со значительными капитальными затратами на бурение скважин и обратную закачку отработанной воды, создание коррозийно-стойкого теплотехнического оборудования.

2.2.4 Энергия биомассы

Большие возможности в собственном энергообеспечении сельскохозяйствен­ных предприятий и экономии ТЭР заложены в использовании энергии отходов сельхозпроизводства и растительной биомассы. В сельскохозяйственном производстве в качестве источников тепла можно принять любые растительные отходы, непригодные для использования по прямому назначению или не нашедшие иного хозяйственного применения.

За последнее время использование биомассы в различных ее формах (дерево, древесный уголь, отходы сельскохозяйственного производства и животных) в мире в целом снизилось.

В ряде стран использование древесного топлива, древесного угля и сельскохозяйственных отходов поставлено на коммерческую основу. Следует отметить, что в сельских районах бывшего СССР доля использования древесного топлива весьма значительна и при переходе на новые энергоносители можно ожидать определенного роста самозаготовок.

Значительное развитие получила переработка биомассы, основанная на процессах газификации, теролиза и получения жидких топлив.

При переработке биомассы в этанол образуются побочные продукты, прежде всего – промывочные воды и остатки перегонки. Последние являются серьезным источником экологического загрязнения окружающей среды. Представляют интерес технологии, которые позволяют в процессе очистки этих отходов получать минеральные вещества, используемые в химической промышленности, а также применять их для производства минеральных удобрений.

Теплотворная способность сжигания 1 т сухого вещества соломы эквивалентна 415 кг сырой нефти, теплотворность 1 кг пшеничной соломы и сухих кукурузных стеб­лей равна 15,5 МДж, соевой соломы - 14,9, рисовой шелухи - 14,3, подсолнечной лузги - 17,2 МДж. По этому показателю растительные отходы полеводства прибли­жаются к дровам - 14,6-15,9 МДж/кг и превосходят бурый уголь - 12,5 МДж/кг.

Проблемы утилизации твердых бытовых отходов (бытового мусора) остро стоят перед всеми странами. Выход мусора составляет 250-700 кг на душу населения в год, увеличиваясь на 4-6% в год, опережая прирост населения.

Решение проблемы переработки мусора найдено в использовании технологии твердофазного сбраживания на обустроенных полигонах с получением биогаза. Эта технология самая дешевая, не оперирует с токсичными выбросами и стоками.

В настоящее время в мире действуют десятки установок для получения биогаза из мусора с использованием его в основном для производства электроэнергии и тепла суммарно мощностью сотни МВт.

В последние годы в связи с лавинообразным накоплением изношенных автомобильных шин, особенно в учетом ужесточения требований по их хранению (на ряде свалок возникли пожары (которые не удавалось потушить годами), активно развивается технология их сжигания.

2.2.5 Водородная энергия

Набирает силу новая отрасль промышленности - водородная энергетика и технология. Потребность экономики в водороде идет по нарастающей. Ведь это простейшее и легчайшее вещество может использоваться не только как топливо, но и как необходимый сырьевой элемент во многих технологических процессах. Он незаменим в нефтехимии для глубокой переработки нефти, без него не обойтись, скажем, в химии при получении аммиака и азотных удобрений, а в черной металлургии с его помощью восстанавливается железо из руд.

Такие существующие виды органического топлива, как газ, нефть и уголь, тоже служат сырьем в этих или подобных процессах, но еще полезнее извлечь из них самый экономный и чистый энергоноситель - тот же водород.

Водород - идеальный экофильный вид топлива. Очень высока и его калорийность - 33 тыс. Ккал/кг, что в 3 раза выше калорийности бензина. Он легко транспортируется по газопроводам, потому что у него очень малая вязкость. По трубопроводу диаметром 1,5 м с ним передается 20тыс. Мегаватт мощности. Перекачка легчайшего газа на расстояние в 500км. почти вдесятеро дешевле, чем передача такого же количества электроэнергии по линиям электропередачи. Как и природный газ, водород пригоден на кухне для приготовления пищи, для отопления и освещения зданий.

Но передавать водород в жидком виде - удовольствие очень дорогое, т.к. для его сжижения нужно потратить почти половину энергии, содержащейся в нем самом. Кроме того, должна быть обеспечена идеальная теплоизоляция трубопровода, так как температура жидкого водорода очень низка.

Как топливо водород сжигается в двигателях ракет и в топливных элементах для непосредственного получения электроэнергии при соединении водорода и кислорода. Его можно использовать и как топливо для авиационного транспорта.

Сейчас в мире получают около 30 миллионов тонн водорода в год, причем в основном из природного газа. Согласно прогнозам за 40 лет производство водорода должно увеличиться в 20-30 раз.

Предстоит с помощью атомной энергетики заменить нынешний источник водорода - природный газ на более дешевое и доступное сырье - воду. Здесь возможны два пути.

Первый путь - традиционный, с помощью электрохимического разложения воды.

Второй путь менее известен. Если нагреть пары воды до 3000-3500 C, то водные молекулы развалятся сами собой.

Оба способа получить водород из воды пока дороже, чем из природного газа. Однако природный газ дорожает, а методы разложения воды совершенствуются. Через какое-то время водород из воды станет дешевле.

Таблица 3

Сравнение ГЭС с нетрадиционными источниками энергии – ВЭУ и гелиоэнергетическими установками.

ГЭС ВЭУ Гелиоэнер-гетические установки
Цена на отпускаемую энергию, тенге/кВт-ч 3,84 8,76 21,6
Себестоимость, тенге/кВт-ч 3,2 7,3 18,0
Срок строительства, лет 0,4 0,6 0,6

Удельные капиталовложения,

тыс. тенге/кВт

125 120 256
Чистый приведенный доход, получаемый на 1 тенге капиталовложений, тенге 0,213 0,208 0,138

Заключение.

Республика Казахстан обладает большими потенциальными возможностями освоения нетрадиционных источников энергии, которые при продуманной государственной политике, направленной на стимулирование освоения данных источников энергии, могут покрыть практически весь дальнейший прирост производства электрической энергии в нашей стране.

Величина социально-экологического и экономического эффектов получаемых при эксплуатации различных видов экологически чистых энергоустановок, существенно отличается и сильно зависит от выбранной технологии.

Величина чистого приведенного дохода, получаемого на 1 тенге капиталовложений, составляет для малых ГЭС 0,213 тенге, что меньше, чем для биогазоэнергетических установок на 9,9%, но больше, чем для ВЭУ на 2,3%. Чистый социально-экономический эффект, получаемый на 1 тенге капиталовложений, для данных установок составляет 0,607 тенге, что на 2,3% меньше, чем для биоустановок, но в то же время на 14,3-69,9% больше, чем для других нетрадиционных источников энергии.


Список использованной литературы

1.   Бляхман Л.С. Экономика, организация управления и планирование научно-технического прогресса

2.   Викторов А.Е. и др. Перспективы использования солнечной энергии в народном хозяйстве Казахстана. Аналитический обзор.

3.   Самойлов М.В. Основы энергосбережения, - 2000

4.   Транзитная экономика, - 2002, №1. Статья «Энергетический комплекс РК: 10 лет спустя» (С. Махметов)

5.   Транзитная экономика, - 2002, №3. Статья «Развитие электроэнергетической отрасли Казахстана» (Е. Темирханов)

6.   Транзитная экономика, - 2002, №4-5. Статья «Особенности структуры энергопотребления в Республике Казахстан» (А.С. Баймуканов)

7.   Шерстюк В.Ю. Совершенствование оценки экономической эффективности чистых источников энергии в Республике Казахстан. – Алматы, 2001


Информация о работе «Эффективность организации и управления нетрадиционными источниками энергии в экономике РК»
Раздел: Экономика
Количество знаков с пробелами: 27132
Количество таблиц: 3
Количество изображений: 2

Похожие работы

Скачать
100528
0
0

... Для улучшенного внедрения экологически чистых энергосберегающих технологий была разработана и утверждена согласно Постановлению Совета Министров Крыма от 14 02.94 г, №26 «Комплексная научно-техническая программа развития нетрадиционных возобновляемых источников энергии в Крыму до 2000 г.». На настоящий момент эта программа из-за отсутствия достаточного финансирования реализована частично и требует ...

Скачать
64964
5
0

... соответствующие требованиям технической. 5 Энерго- и материалосбережение Для эффективного материалосбережения при разработке энергосберегающей системы освещения были применены следующие методы: 1.         Уменьшение размеров печатной платы за счет увеличения плотности компоновки и рационального использование пространства платы, что экономит текстолит, затрачиваемый на изготовление платы. ...

Скачать
109448
20
7

... северных регионов за счет возведения двойной оболочки здания с использованием солнечной энергии можно обеспечить до 40% экономии тепла. Учитывая развитие технологий возобновляемой энергетики, с должной долей уверенности можно сказать о реальной возможности создания эффективной системы энергоснабжения удаленных от центральной энергосети сельских домов при условии комбинированного использования ...

Скачать
45009
2
0

... , на предприятиях республики; ·  открытие веб-страницы в системе Интернет и постоянное представление информации о состоянии и работе в области энергосбережения в Республике Беларусь; ·  создание единого информационного поля в области энергосбережения с соответствующими управленческими структурами России и других стран СНГ, в том числе, издание совместного реферативного журнала отечественных и ...

0 комментариев


Наверх