200 см 20см

Рис.1 Прямолинейное распространение света: получение изображения с помощью малого отверстия.

Закон прямолинейного распространения может считаться прочно установленном на опыте. Он имеет весьма глубокий смысл, ибо само понятие о прямой линии, по-видимому возникло из оптических наблюдений. Геометрическое понятие прямой как линии, представляющей кратчайшее расстояние между двумя точками, есть понятие о линии, по которой распространяется свет в однородной среде.

Более детальное исследование описываемых явлений показывает, что закон прямолинейного распространения света теряет силу, если мы переходим к очень малым отверстиям.

Так, в опыте, изображенном на рис. 1, мы получим хорошее изображение при размере отверстия около 0,5 мм. При последующем уменьшении отверстия - изображение будет несовершенным, а при отверстии около 0,5-0,1 мкм изображение совсем не получится и экран будет освещён практически равномерно.

1.2 Закон независимости световых пучков.

Световой поток можно разбить на отдельные световые пучки, выделяя их, например, при помощи диафрагм. Действие этих выделенных световых пучков оказывается независимым, т.е. эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно другие пучки или они устранены.

1.3 Закон отражения света.

Луч падающий, нормаль к отражающей поверхности и луч отраженный лежат в одной плоскости (рис. 2), причем углы между лучами и нормалью равны между собой: угол падения i равен углу отражения i'. Этот закон также упоминается в сочинениях Евклида. Установление его связано с употреблением полированных металлических поверхностей (зеркал), известных уже в очень отдаленную эпоху.

Рис. 2 Закон отражения.

Рис. 3 Закон преломления.

1.4   Закон преломления света.

Преломление света – изменение направления распространения оптического излучения (света) при его прохождении через границу раздела однородных изотропных прозрачных (не поглощающих) сред с показателем преломления n1 и  n2. Преломление света определяется следующими двумя закономерностями : преломленный луч лежит в плоскости , проходящей через падающий луч и нормаль (перпендикуляр) к поверхности раздела; углы падения φ и

преломления χ (рис.3) связаны законом преломления Снелля :

sinφ

sinχ

 
n1sinφ = n2sinχ или  = n,

где n – постоянная , не зависящая от углов φ и χ. Величина n – показатель преломления, определяется свойствами обеих сред, через границу раздела которых проходит свет, и зависит также от цвета лучей.

Преломление света сопровождается также отражением света.

На рис. 3 ход лучей света при преломлении на плоской поверхности , разделяющей две прозрачные среды. Пунктиром обозначен отраженный луч. Угол преломления χ больше угла падения φ; это указывает, что в данном случае происходит преломление из оптически более плотной первой среды в оптически менее плотную вторую (n1 > n2), n – нормаль к поверхности раздела.

Явление преломления света было известно уже Аристотелю. Попытка установить количественный закон принадлежит знаменитому астроному Птолемею (120 г. н.э.), который предпринял измерение углов падения и преломления.

Закон отражения и закон преломления также справедливы лишь при соблюдении известных условий. В том случае, когда размер отражающего зеркала или поверхности, разделяющей две среды, мал , мы наблюдаем заметные отступления от указанных выше законов. Однако для обширной области явлений, наблюдаемые в обычных оптических приборах, все перечисленные законы соблюдаются достаточно строго. [ 3 ]


Глава 2. Идеальные оптические системы.

Гаусс (1841 г.) дал общую теорию оптических систем, получившую дальнейшее развитие в трудах многих математиков и физиков.

Теория Гаусса есть теория идеальной оптической, системы, т.е. системы, в которой сохраняется гомоцентричность пучков и изображение геометрически подобно предмету. Согласно этому определению всякой точке пространства объектов соответствует в идеальной системе точка пространства изображений ; эти точки носят название сопряженных. Точно так же каждой прямой или плоскости пространства объектов должна соответствовать сопряженная прямая или плоскость пространства изображений. Таким образом, теория идеальной оптической системы есть чисто геометрическая теория, устанавливающая соотношение между точками, линиями , плоскостями.

Идеальная оптическая система может быть осуществлена с достаточным приближением в виде центрированной оптической системы , если ограничиться областью вблизи оси симметрии, т.е. параксиальными пучками. В теории Гаусса требование «тонкости» системы отпадает , но лучи по-прежнему предполагаются параксиальными. Разыскание оптической системы , которая приближалась бы к идеальной даже при пучках значительного раскрытия, есть такая задача прикладной геометрической оптики.

Линия, соединяющая центры сферических поверхностей , представляет собой ось симметрии центрированной системы и называется главной оптической осью системы. Теория Гаусса устанавливает ряд так называемых точек и плоскостей , задание которых полностью описывает все свойства оптической системы и позволяет пользоваться ею , не рассматривая реального хода лучей в системе.

 


Пусть ММ и NN – крайние сферические поверхности , ограничивающие систему, и ОО1 – ее главная ось (рис. 4 ). Проведем луч А1В1 , параллельный О1О2; точка В1 есть место входа этого луча в систему. Согласно свойству идеальной системы лучу А1В1 соответствует в пространстве изображений сопряженный луч G2F2, выходящий из системы в точке G2 . Как идет луч внутри системы нас не интересует . Второй луч P1Q1 выберем вдоль главной оси. Сопряженный ему луч Q2P2 будет также идти вдоль главной оси . Точка F2  как пересечение двух лучей G2F2 и Q2P2 есть изображение точки , в которой пересекаются лучи А1В1 и P1Q1 , сопряженные с G2F2 и Q2P2 . Но так как А1В1 P1Q1 , то точка, сопряженная с F2 , лежит в бесконечности. Таким образом , F2 есть фокус (второй , или задний) системы. Плоскость, проходящая через фокус перпендикулярно к оси , носит название фокальной.

Любая точка линии H1R1 сопряжена с точкой линии H2R2 , лежащей на такой же высоте от О1О2 , как и выбранная . То же относится и к плоскостям, проведенным через H1R1 и H2R2 . перпендикулярно к главной оси , т.к. вся система симметрична относительно оси. Плоскость H1R1 , изображается на H2R2 прямо и в натуральную величину. Такие плоскости называются главными плоскостями.

Таким образом, идеальная оптическая система обладает главными плоскостями. Точки H1 и H2 пересечения главных плоскостей с осью носят название главных точек системы. Расстояния от главных точек до фокусов называются фокусным расстоянием системы f1 = H1R1 и f2 = H2R2 . [ 3 ]


Глава 3. Составляющие оптических систем.

Реальные оптические системы дают удовлетворительное изображение только при известном ограничении ширины действующих пучков лучей. Но даже и для идеальных систем, которые могли бы давать правильные изображения плоского предмета при любом угле раскрытия пучков, их ограничение имеет существенное значение.

3.1 Диафрагмы и их роль в оптических системах.

Диафрагма – непрозрачная преграда , ограничивающая поперечное сечение световых пучков в оптических системах (в телескопах, дальномерах , микроскопах, кино- и фотоаппаратах и т.д.). роль диафрагм часто играют оправы линз, призм, зеркал, и других оптических деталей, зрачок глаза, границы освещенного предмета, в спектроскопах – щели.

Любая оптическая система – глаз вооруженный и невооруженный, фотографический аппарат, проекционный аппарат – в конечном счете рисует изображение на плоскости (экран, фотопластинка, сетчатка глаза); объекты же в большинстве случаев трёхмерны. Однако даже идеальная оптическая система, не будучи ограниченной, не давала бы изображений трехмерного объекта на плоскости. Действительно, отдельные точки трехмерного объекта находятся на различных расстояниях от оптической системы, и им соответствуют различные сопряженные плоскости.

Светящаяся точка О (рис. 5) дает резкое изображение О` в плоскости ММ1 сопряженной с ЕЕ. Но точки А и В дают резкие изображения в A` и B`, а в плоскости ММ проектируются светлыми кружками, размер которых зависит от ограничения ширины пучков. Если бы система не была ничем не ограниченна , то пучки от А и В освещали бы плоскость ММ равномерно, от есть не получилось бы никакого изображения предмета, а лишь изображение отдельных точек его, лежащих в плоскости ЕЕ.

Рис. 5 Влияние диафрагмы на глубину резкого изображения.

 
 

Чем уже пучки тем, тем отчетливее изображение пространства предмета на плоскости. Точнее, на плоскости изображается не сам пространственный предмет, а та плоская картина, которая является проекцией предмета на некоторую плоскость ЕЕ (плоскость установки), сопряженную относительно системы с плоскостью изображения ММ. Центром проекции служит одна из точек системы (центр входного зрачка оптического инструмента ).

Размеры и положение диафрагмы определяют освещенность и качество изображения, глубину резкости и разрешающую способность оптической системы, поле зрения.

Диафрагма наиболее сильно ограничивающая световой пучок , называется апертурной или действующей. Её роль может выполнять оправа какой-либо линзы или специальная диафрагма ВВ, если эта диафрагма сильнее ограничивает пучки света, чем оправы линз.

P Q1 P2

Q Q2  

 L1

L2

 

Рис. 6. ВВ – апертурная диафрагма; В1В1 – входной зрачок; В2В2 – выходной зрачок.

 

Апертурная диафрагма ВВ нередко располагается между отдельными компонентами (линзами) сложной оптической системы (рис.6), но её можно поместить и перед системой или после её.

Если ВВ - действительная апертурная диафрагма (рис. 6) ,а В1В1 и В2В2 - её изображения в передней и задней частях системы , то все лучи , прошедшие через ВВ, пройдут через В1В1 и В2В2 и на оборот , т.е. любая из диафрагм ВВ, В1В1 , В2В2 ограничивает активные пучки. [3 ]

3.2 Входной и выходной зрачки.

Входным зрачком называется то из действительных отверстий или их изображений, которое сильнее всего ограничивает входящий пучок, т.е. видно под наименьшим углом из точки пересечения оптической оси с плоскостью предмета.

Выходным зрачком называется отверстие или его изображение, ограничивающее выходящий из системы пучок. Входной и выходной зрачки являются сопряженными по отношению ко всей системе.

Роль входного зрачка может играть то или иное отверстие или его изображение (действительное или мнимое). В некоторых важных случаях изображаемый предмет есть освещенное отверстие (например, щель спектрографа), причем освещение обеспечивается непосредственно источником света, расположенным недалеко от отверстия, или при помощи вспомогательного конденсора. В таком случае в зависимости от расположения роль входного зрачка может играть граница источника или его изображения, или граница конденсора и т.д.

Если апертурная диафрагма лежит перед системой , то она совпадает с входным зрачком, а выходным зрачком явится её изображение в этой системе . Если она лежит сзади системы, то она совпадает с выходными зрачком, а входным зрачком явится её изображение в системе. Если апертурная диафрагма ВВ лежит внутри системы (рис. 6) , то её изображение В1В1 в передней части системы служит входным зрачком , а изображение В2В2 в задней части системы – выходным. Угол, под которым виден радиус входного зрачка из точки пересечения оси с плоскостью предмета, называется «апертурным углом», а угол , под которым виден радиус выходного зрачка из точки пересечения оси с плоскостью изображения, есть угол проекции или выходной апертурный угол. [ 3 ]


Глава 4. Современные оптические системы. 4.1 Оптическая система.

Тонкая линза представляет простейшую оптическую систему. Простые тонкие линзы применяются главным образом в виде стекол для очков. Кроме того, общеизвестно применение линзы в качестве увеличительного стекла.

Действие многих оптических приборов – проекционного фонаря, фотоаппарата и других приборов - может быть схематически уподоблено действию тонких линз. Однако тонкая линза дает хорошее изображение только в том сравнительно редком случае , когда можно ограничиться узким одноцветным пучком, идущим от источника вдоль главной оптической оси или под большим углом к ней. В большинстве же практических задач, где эти условия не выполняются, изображение , даваемое тонкой линзой , довольно не совершенно. Поэтому в большинстве случаев прибегают к построению более сложных оптических систем , имеющих большое число преломляющих поверхностей и не ограниченных требованием близости этих поверхностей (требование , которому удовлетворяет тонкая линза ). [ 4 ]



4.2 Фотографический аппарат.

Оптический прибор , предназначенный для получения фотографических снимков находящихся перед ним предметов, называют фотографическим аппаратом. Он состоит из светопроницаемой камеры К (рис. 8 ) с подвижной передней стенкой, в которой находится объектив О.


При фотографировании предмета АВ сначала с по­мощью перемещения объ­ектива на задней стенке аппарата получают резкое изображение предмета A1B1. Затем объектив закрывается и на зад­ней стенке фотоаппарата помещается пластинка или пленка П, покрытая светочувствительным слоем. Затем объектив открывается на определенное время, называемое выдержкой. При этом на светочувствительном слое под действием света происходит химиче­ская реакция и возникает скрытое изображение предмета.

После проявления и закрепления с помощью специальных со­ставов изображение на пластинке или пленке становится видимым. На полученном изображении светлые места предметов оказываются темными, а темные — светлыми и прозрачными, поэтому такое изоб­ражение называют негативом. Для получения обыкновенно­го фотоснимка, который называют позитивом, на негатив накладывают светочувствительную бумагу и освещают его так, чтобы лучи попадали на бумагу сквозь негатив. Через некоторое время на бумаге возникают скрытое изображение предмета. После проявления и закрепления на ней получается уже обычная фотогра­фия предмета. С одного негатива можно получить много позитивов, т. е. фотоснимков.

Для « засвечивания » фотобумаги обычно используют фотоувеличитель (рис. 9). [ 2 ]


4.3 Глаз как оптическая система.

Органом зрения человека являются глаза, которые во многих отношениях представляют со­бой весьма совершенную оптическую систему.

В целом глаз человека — это шарообразное тело диаметром око­ло 2,5 см, которое называют глазным яблоком (рис.10). Непрозрачную и прочную внешнюю оболочку глаза называют склерой, а ее прозрачную и более выпуклую переднюю часть — роговицей. С внутренней стороны склера покрыта сосудистой оболочкой, состоящей из кровеносных сосудов, питающих глаз. Против ро­говицы сосудистая оболоч­ка переходит в радуж­ную оболочку, неодинаково окрашенную у различных людей, которая отделена от роговицы каме­рой с прозрачной водяни­стой массой.

В радужной оболочке имеется круглое отверстие,

называемое зрачком, диаметр которого может из­меняться. Таким образом, радужная оболочка играет роль диафрагмы, регулирующей доступ света в глаз. При ярком освещении зрачок уменьшается, а при сла­бом освещении — увеличивается. Внутри глазного яблока за ра­дужной оболочкой расположен хрусталик, который представ­ляет собой двояковыпуклую линзу из прозрачного вещества с показателем преломления около 1,4. Хрусталик окаймляет кольце­вая мышца, которая может изменять кривизну его поверхностей, а значит, и его оптическую силу.

Сосудистая оболочка с внутренней стороны глаза покрыта разветвлениями светочувствительного нерва , особенно густыми напротив зрачка. Эти разветвления образуют сетчатую оболочку , на которой получается действительное изображение предметов, создаваемое оптической системой глаза. Пространство между сетчаткой и хрусталиком заполнено прозрачным стекловидным телом, имеющим студенистое строение. Изображение предметов на сетчатке глаза получается перевернутое. Однако деятельность мозга, получающего сигналы от светочувствительного нерва, позволяет нам видеть все предметы в натуральных положениях.

Когда кольцевая мышца глаза расслаблена, то изображение далеких предметов получается на сетчатке . вообще устройство глаза таково, что человек может видеть без напряжения предметы, расположенные не ближе 6 м от глаза. Изображение более близких предметов в этом случае получается за сетчаткой глаза. Для получения отчетливого изображения такого предмета кольцевая мышца сжимает хрусталик всё сильнее до тех пор, пока изображение предмета не окажется на сетчатке, а затем удерживает хрусталик в сжатом состоянии.

Таким образом, «наводка на фокус» глаза человека осуществляется изменением оптической силы хрусталика с помощью кольцевой мышцы. Способность оптической системы глаза создавать отчетливые изображения предметов, находящих на различных расстояниях от него , называют аккомодацией ( от латинского «аккомодацио» – приспособление). При рассматривании очень далёких предметов в глаз попадают параллельные лучи. В этом случае говорят , что глаз аккомодирован на бесконечность.

Аккомодация глаза не бесконечна. С помощью кольцевой мышцы оптическая сила глаза может увеличиваться не больше чем на 12 диоптрий. При долгом рассматривании близких предметов глаз устает , а кольцевая мышца начинает расслабляться и изображение предмета расплывается.

Глаза человека позволяют хорошо видеть предметы не только при дневном освещении. Способность глаза приспосабливаться к различной степени раздражения окончаний светочувствительного нерва на сетчатке глаза, т.е. к различной степени яркости наблюдаемых объектов называют адаптацией.

Сведение зрительных осей глаз на определенной точке называется конвергенцией. Когда предметы расположены на значительном расстоянии от человека, то при пере воде глаз с одного предмета на другой между осями глаз практически не изменяется, и человек теряет способность правильно определять положение предмета. Когда предметы находятся очень далеко , то оси глаз располагаются параллельно , и человек не может даже определить , движется предмет или нет, на который он смотрит. Некоторую роль в определении положения тел играет и усилие кольцевой мышцы, которая сжимает хрусталик при рассматривании предметов , расположенных недалеко от человека. [ 2 ]


Глава 5. Оптические системы, вооружающие глаз.

Хотя глаз и не представляет собой тонкую линзу , в нем можно все же найти точку, через которую лучи проходят практически без преломления , т.е. точку, играющую роль оптического центра. Оптический центр глаза находится внутри хрусталика вблизи задней поверхности его. Расстояние h от оптического центра до сетчатой оболочки, называемое глубиной глаза, составляет для нормального глаза 15 мм.

Зная положение оптического центра, можно легко построить изображение какого-либо предмета на сетчатой оболочке глаза. Изображение всегда действительное, уменьшенное и обратное (рис.11,а). Угол φ , под которым виден предмет S1S2 из оптического центра О , называется углом зрения.

Сетчатая оболочка имеет сложное строение и состоит из отдельных светочувствительных элементов. Поэтому две точки объекта, расположенные настолько близко друг к другу, что их изображение на сетчатке попадают в один и тот же элемент, воспринимаются глазом, как одна точка . Минимальный угол зрения, под которым две светящихся точки или две черные точки на белом фоне воспринимаются глазом ещё раздельно , составляет приблизительно одну минуту. Глаз плохо распознает детали предмета, которые он видит под углом менее 1". Это угол , под которым виден отрезок, длина которого 1 см на расстоянии 34 см от глаза. При плохом освещении ( в сумерках ) минимальный угол разрешения повышается и может дойти до 1º.

Рис. 11. Коррекция изображения рассматриваемых предметов : а - угол зрения φ = S1' S2' / h = S1 S2 / D ;

б – при увеличении угла зрения увеличивается изображение рассматриваемого предмета на сетчатке ; N = b' / b = φ' / φ .

 



Приближая предмет к глазу , мы увеличиваем угол зрения и, следовательно, получаем

возможность лучше различать мелкие детали. Однако очень близко к глазу приблизить мы не можем, так как способность глаза к аккомодации ограничена. Для нормального глаза наиболее благоприятным для рассматривания предмета оказывается расстояние около 25 см, при котором глаз достаточно хорошо различает детали без чрезмерного утомления. Это расстояние называется расстоянием наилучшего зрения . для близорукого глаза это расстояние несколько меньше . поэтому близорукие люди , помещая рассматриваемый предмет ближе к глазу, чем люди с нормальным зрением или дальнозоркие, видят его под большим углом зрения и могут лучше различать мелкие детали.

Значительное увеличение угла зрения достигается с помощью оптических приборов. По своему назначению оптические приборы , вооружающие глаз, можно разбить на следующие большие группы.


Информация о работе «Оптика»
Раздел: Физика
Количество знаков с пробелами: 48082
Количество таблиц: 3
Количество изображений: 21

Похожие работы

Скачать
82138
7
0

... работ, требующих от них полной отдачи. 6. Контроль. Контроль - это процесс обеспечения достижения организацией своих целей. [5, с. 390] Контроль есть фундаментальнейший элемент процесса управления. Ни планирование, ни создание организационных структур, ни мотивацию нельзя рассматривать полностью в отрыве от контроля: фактически все они являются неотъемлемыми частями общей системы контроля в ...

Скачать
50587
0
8

... Юнга з двома отворами. 2.4 Розв'язування задач з оптики, домашні досліди і спостереження Розв'язування задач з оптики сприяє формуванню фізичних понять, усвідомленню і закріпленню учнями матеріалу, зв'язків між фізичними величинами. Зокрема, розв'язуючи задачі з цього розділу, учні міцніше засвоюють основні закони геометричної оптики (прямолінійне поширення світла, незалежність світлових ...

Скачать
51288
0
7

... проблем. С помощью голографии получают пространственные изображения предметов, регистрируют (при импульсном освещении) быстропротекающие процессы, исследуют сдвиги и напряжения в телах и т.д. Оптические явления и методы, разработанные в Оптика, широко применяются для аналитических целей и контроля в самых различных областях науки и техники. Особенно большое значение имеют методы спектрального ...

Скачать
104776
0
13

... , хотя ему уже придавали иной смысл, нежели тот, который вкладывал в него Кулон.Введение понятия потенциалав электростатику Открытие закона Кулона было очень важным шагом в развитии учения об электричестве и магнетизме. Это был первый физический закон, выражающий количественные соотношения между физическими величинами в учении об электричестве и магнетизме. С помощью этого закона можно было ...

0 комментариев


Наверх