Александр Филатов
Введение
В настоящее время топливно-энергетическая и экологическая проблемы приобретают все большую актуальность и масштабность. В ближайшие десятилетия наращивание энергопроизводства только за счет органических топлив невозможно. Это обусловлено ограниченностью их запасов, ростом потребности в них других отраслей промышленности, загрязнением окружающей среды.
Самым перспективным энергоносителем в настоящее время является водород (в жидком и газообразном состоянии).
Сейчас количество самолетов, двигателей, аэропортов так велико, что смена топлива кажется дорогим и долгим процессом.
В данной работе кратко изложены основные идеи постепенного перехода авиации на криогенное топливо. Данная работа не содержит секретной информации.
Водород – авиационное топливо
Водород удовлетворяет многим требованиям, предъявляемым к топливам. Водород дает минимум загрязнения окружающей среды. Высокая массовая теплота сгорания примерно в 2,8 раза превышает теплоту сгорания керосина, его высокая полнота сгорания позволяет повысить эффективность двигателей, уменьшить удельный расход топлива, уменьшить массу и габариты двигателя.
К достоинствам водорода как авиационного топлива следует добавить следующее. LH2 легко испаряется и быстро распространяется по всему объему камеры сгорания, что способствует быстрому запуску двигателя. Незначительная энергия и широкие пределы воспламенения водородно-воздушной смеси также способствуют быстрому запуску двигателя при различных температурах и на различных высотах. Водород при сгорании дает пламя с низкой излучающей способностью и сгорает без образования нагара, что позволяет увеличить ресурс и надежность двигателей. Малая коррозионная активность водорода. Двигатели на LH2 практически не загрязняют окружающую среду. Теплопоглощающая способность водорода в 30 (!) раз выше, чем у керосина, что позволяет использовать его в системах охлаждения элементов двигателя и ЛА. Повышение эффективности охлаждения турбин позволяет поднять температуру перед турбиной и степень повышения давления в компрессоре. Это приведет к значительному снижению удельного расхода горючего (15-20%) и повышению удельной тяги двигателя. Высокие кинетические свойства LH2 как горючего: быстрое протекание смесеобразования, устойчивость к ВЧ колебаниям. Меньшая масса ЛА позволяет уменьшить нагрузку на крыло и размеры крыла. Это снизит шум в районе аэропорта. Работа на LH2 позволяет создавать компактные камеры сгорания с более равномерным температурным полем на выходе. Вследствие более высокой теплоемкости газа, температура на входе будет более низкой и т. д.
Летные качества ЛА на LH2 имеют тенденцию к оптимизации при М» 6. То есть, чем выше скорость самолета и больше его масса, тем целесообразнее переход на водород. Большинство проблем, связанных с использованием LH2 как авиационного топлива, связано с его очень низкой плотностью (63-70 кг/м3) и низкой температурой кипения (20К). Значит, самолетные баки должны быть относительно крупными и иметь конфигурацию с минимизированным отношением поверхности к объему, чтобы избежать избыточных потерь на испарение и дополнительную массу изоляции. Также некоторые конструкционные материалы становятся хрупкими в LH2.
Летательные аппараты
Рассмотрим постепенный переход авиации на криогенное топливо. Он состоит из трех этапов.
1.Только несколько аэропортов имеют криогенные системы заправки. На данном этапе используют обычные ЛА и двухтопливные ЛА . Последние представляют собой существующие самолеты с установленным криогенным баком. Необходимая масса водорода в 2,8 раза меньше массы керосина, но из-за низкой плотности водорода, потребный объем баков выше в 4,3 раза. Такое количество топлива можно поместить над салоном по всей длине ЛА. Конечно, можно разместить бак в салоне, но это снизит количество пассажирских мест и повысит стоимость билета. Двухтопливные ЛА могут использовать как керосин, так и водород. Их применение оправдано о двум причинам: а) они не требуют обязательного наличия криогенной системы в аэропортах, б) стимулируют развитие криогенной инфраструктуры.
2.Крупнейшие аэропорты имеют криогенные системы. Около 50% пассажиров перевозится на водороде. На этом этапе самый распространенный тип ЛА – двухтопливный. Керосиновые ЛА вытесняются появлением собственно криогенных ЛА, в том числе гиперзвуковых. Такие ЛА изначально спроектированы под использование водорода. Большая часть подъемной силы производится плоским фюзеляжем. Небольшие крылья простираются вдоль всего ЛА и заканчиваются рулями высоты. Криогенный бак расположен в центре фюзеляжа по всей его длине. По обеим сторонам от него находятся пассажирские салоны. Там где фюзеляж переходит в крылья, расположены два ГТД. В хвостовой части или под крыльями расположены гиперзвуковые двигатели внешнего горения. ГТД используются при взлете-посадке и на скоростях до 1,5-2М. Основной полет происходит на скорости 6-12М на высоте свыше 18 км с использованием двигателей внешнего горения. Входные и выходные отверстия ГТД в это время закрыты аэродинамическими щитками.
При небольшом изменении конструкции и установке ракетного двигателя, такой ЛА может выйти на орбиту. Он не имеет ГТД. Вместо них расположены баки с жидким кислородом. Также возможна установка подвесных баков. ЛА стартует с любого аэропорта с помощью РД. Используя подъемную силу фюзеляжа и крыла, он разгоняется до 2М. Далее включаются авиационные двигатели внешнего горения (они используют кислород из атмосферы). ЛА достигает максимально возможной высоты и скорости, и вновь включается ракетный двигатель.
... период многие страны приняли решение о полном или постепенном отказе от развития атомной энергетики. 1.3 Особенности альтернативной водородной энергетики Водородная энергетика включает следующие основные направления: Разработка эффективных методов и процессов крупномасштабного получения дешевого водорода из метана и сероводородсодержащего природного газа, а также на базе разложения воды; ...
... самолетостроения. Через некоторое время М4 модернизировали. На нем установили носовую штангу для дозаправки топливом в воздухе и ТРД АМ-3М с Ртрд=93.2 кН, что нескольно улучшило его летно-технические характеристики. Самолет получил название М4А. Задача по созданию более совершенного тяжелого стратегического бомбардировщика вскоре была выполнена. В ОКБ В.М.Мясищева был создан самолет 201М, который ...
... аэродинамики, такие,как Н. Е. Жуковский, С. А. Чаплыгин, Б. Н. Юрьев, В. В. Голубев, М. В. Келдыш, С. А. Христианович, Г. П. Свищев, В. В. Струминский и многие другие, находились во главе прогресса авиации. Трудность прикладного использования теоретических исследований состояла в том, что теоретические решения могли быть найдены только для отдельных форм профилей, крыльев, тел вращения. Это ...
... перевода машин и механизмов на использование более чистых источников энергии (солнечной, водородной, электрической); повышение знаний инженеров и обслуживающего персонала в области триботехники, а также взаимосвязи триботехнических показателей с экономикой и экологией. Проблемы технического обновления различных отраслей машиностроения Ушедший в историю 20 век не освободил ...
0 комментариев