2. Внутренняя структура протона.

Во второй половине прошлого века теоретическая физика пришла к выводу о возможности распада протона [2, 3]. Распад протона представляет собой очень заманчивое явление для цели получения экологически чистой энергии. Протон был открыт в начале 20-х г.г. прошлого века в экспериментах с альфа-частицами. В опытах по рассеянию на протонах электронов и гамма-квантов были получены доказательства существования внутренней структуры у этой частицы. В 1970 г. в Стенфордском центре линейного ускорителя удалось в эксперименте получить прямое свидетельство того, что протон действительно обладает внутренней структурой [1]. Однако, до сих пор отсутствует понимание, на каких принципах строится механизм формирования структуры протона. Из-за этого у протона остается много нераскрытых тайн. Непонятно его происхождение, неизвестна причина его стабильности. Не находит объяснение природа его массы, равная 1836,1526675(39) электронным массам. Из всех тяжелых частиц протон является единственной стабильной частицей. Эта частица является основой всех сложных вещественных образований Вселенной. Мир своим существованием обязан протону. Есть все основания полагать, что раскрытие его внутренней структуры откроет доступ к новым способам получения энергии. Освоение энергии протона может стать важнейшим фактором в решении энергетической проблемы.

Теория внутренней структуры протона изложена в [6, 8, 10], где показано, что структура протона представляет собой фрактальную конструкцию. Фрактал, выявленный в струтуре протона, отражает детерминированный процесс его образования. Открытие фрактальной закономерности образования протона, позволило получить важные характеристики элементарных частиц расчетным путем. В [6, 8, 10] определены фрактальные структуры различных элементарных частиц и найдено математическое описание фрактала протона.

Этапы и закономерность формирования структуры протона приведены на рис. 2. Формирование полной структуры протона происходит за десять шагов структурообразования, что представлено «фрактальным треугольником» [10].

P1 = 1+1

P2 = (2+1)

P3 = 2(2+1)+1

P4 = 2(2(2+1)+1)+1

P5 = 2(2(2(2+1)+1)+1)+1

P6 = 2(2(2(2(2+1)+1)+1)+1)+1

P7 = 2(2(2(2(2(2+1)+1)+1)+1)+1)+1

P8 = 2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1

P9 = 2(2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1)+1

P10 = 2(2(2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1)+1)+1

P11 = 2(2(2(2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1)+1)+1)+1

Рис. 2. Десять этапов формирования структуры протона.

На рис. 2 Рn – количество ветвей фрактала, адекватных зарядово-сопряженным вещественным образованиям. Фрактал протона имеет перекрывающиеся самоподобные структуры различного масштаба. Общая структура представляет собой переплетающийся узор, где завершающий фрагмент субструктуры низшего порядка является одновременно началом субструктуры более высокого порядка (рис. 3). Невозможно отделить или изъять из общей структуры повторяющуюся самоподобную субструктуру, не разрушая при этом весь переплетающийся узор (рис. 3). Протон имеет 10 самоподобных внутренних субструктур, повторяющих в масштабе первичную ячейку фрактала.

Рис. 3. Фрагмент самоподобной внутреннней структуры протона.

Внутренняя структура протона образуется системой последовательных вложений, основанной на едином алгоритме. На каждом структурном уровне фрактальная субструктура повторяет фрактал предыдущего уровня. Исследование фрактала протона показывает, что внутренняя структура протона имеет квантованность, пространственную упорядоченность и иерархию внутренего строения. Для внутренней струтуры протона свойственна определенная иерархия характерных частот. Таким образом, наряду с пространственной упорядоченностью, которая проявляется в фрактальной структуре протона, существует и временная упорядоченность, которая проявляется в характерных частотах.

Фрактал протона позволил получить теоретическим расчетом фундаментальную константу протона mp/me =1836,1526, что указывает на экспериментальное подтверждение теории внутренней структуры протона [6,8,10]. Раскрытие закономерности внутренней структуры протона дает ключ к пониманию причины его исключительной стабильности и открывает доступ к новым способам получения энергии.

3. Индуцированный распад протона.

Теория внутренней структуры протона указывает на то, что возможен процесс индуцированного распада протона. Существуют условия, при которых протон теряет устойчивость. Если внешнее энергетическое воздействие превысит внутреннюю энергию, определяющую стабильность протона, то возможна деструктуризация частицы. Условием, приводящим к реализации такого процесса, является сообщение протону энергии, которая должна превышать определенную пороговую величину [8].

Из фрактала протона следует, что энергия протона разделяется на две составляющие. Первая составляющая представляет собой суммарную энергию покоя вещественных образований, участвующих в формировании структуры протона.Вторая составляющая представлена слагаемыми, которые задают величину энергии, определяющую стабильность протона. Фрактальный закон формирования внутренней структуры протона позволил открыть новую безразмерную физическую константу (P), относящуюся к внутренней структуре протона [6, 11, 13]. Эта константа фрактальной структуры протона, она отражает степень его устойчивости. Ее значение равно: P=210,8473325(39). Константа фрактальной структуры протона P представляет собой десятикомпонентный дискретный ряд чисел. Десятикомпонентному дискретному ряду константы фрактальной структуры протона P соответствует дискретный ряд внутренней энергии протона. Эта энергия определяет степень устойчивости протона. Значение энергии равна 107,7427553(65) МэВ и составляет около 11,5% от энергии покоя этой частицы [6, 8, 11]. Исследования показали, что эта энергия представляет собой набор дискретных уровней и содержит 10 составляющих:

E = 54,9 + 20,35 + 13,35 + 8,23 + 4,84 + 2,84 + 1,62 + 0,87 + 0,48 + 0,26 (МэВ) = 107,74 МэВ.

Это важнейшая характеристика протона, знание которой является ключевым моментом для реализации нового способа получения энергии. Если протону сообщить дополнительную энергию (≈108 MэВ), то он станет нестабильным и распадется на легкие частицы, имеющие очень малое время жизни, в результате чего произойдет полное его превращение в энергию. Отметим следующую важную особенность индуцированного распада протона, связанную с его фрактальным строением. Прямое сообщение протону энергии 107,74 МэВ, например, путем его ускорения, не приведет к его распаду, поскольку дополнительная энергия должна быть структурирована в соответствии с фрактальным законом внутреннего строения протона.

В формировании структуры протона принимают участие зарядово-сопряженные частицы. В формировании структуры протона реализован рекурсивный алгоритм [4, 8, 10]. Процесс деструктуризации протона также подчиняется рекурсивному алгоритму. Из фрактала протона следует, что при деструктуризации частицы также будут появляться зарядово-сопряженные частицы в результате распада промежуточных частиц.

На рис. 4 приведен "перевернутый фрактальный треугольник", отражающий динамику индуцированного распада протона.

P1 = 2(2(2(2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1)+1)+1)+1

P2 = 2(2(2(2(2(2(2(2(2+l)+l)+l)+l)+l)+l)+l)+l)+l

P3 = 2(2(2(2(2(2(2(2+l)+l)+l)+l)+l)+l)+l)+l

P4 = 2(2(2(2(2(2(2+l)+l)+l)+l)+l)+l)+l

P5 = 2(2(2(2(2(2+l)+l)+l)+l)+l)+l

P6 = 2(2(2(2(2+l)+l)+l)+l)+l

P7 = 2(2(2(2+l)+l)+l)+l

P8 = 2(2(2+l)+l)+l

P9 = 2(2+l)+l

P10 = (2+1)

P11 = 2

Рис. 4. Перевернутый фрактальный треугольник, отражающий динамику индуцированного распада протона.

Распад протона происходит за десять шагов и реализуется по фрактальному алгоритму. Все промежуточные вещественные образования, значение массы которых находится в промежутке между массой электрона и массой протона неустойчивы и имеют конечное время жизни. Протон проходит процесс деструктуризации путем десятишаговой цепочки превращений, порождая промежуточные вещественные образования, пока не появятся зарядово-сопряженные частицы минимальной структурной сложности, после чего происходит полное превращение вещества в энергию [6, 8, 12].

Схему индуцированного распада протона можно представить в виде (рис. 5):

Рис. 5. Схема индуцированного распада протона.

Индуцированный распад протона – это новый физический эффект, с которым непосредственно связана физическая константа фрактальной структуры протона P. При индуцированном распаде протона на конечной стадии энергопреобразований не появляется опасное для биосферы вещество. В данной схеме энергопреобразований отсутствуют реакции синтеза, а вместо них реализуется реакция деструктуризации вещества посредством индуцированного распада протона. В результате высвобождается энергия, содержащаяся в протоне. Эта энергия огромна! Преобразование вещества в энергию позволяет получать беспрецедентно высокие уровни энергии и сделать процесс получения энергии экологически чистым. Новая схема энергопреобразований выглядит так: "вещество в начале энергопреобразований –энергия в конце энергопреобразований".


Информация о работе «Вода - энергоноситель, способный заменить нефть.»
Раздел: Наука и техника
Количество знаков с пробелами: 25599
Количество таблиц: 3
Количество изображений: 7

Похожие работы

Скачать
11231
0
4

... за стабильность протона, позволяет реализовать его индуцированный распад, что открывает путь к совершенно новым способам получения энергии. 2.2. Индуцированный распад протона. Из уравнений (1) - (3) следует, что возможен процесс обратный структурогенезу протона. Это значит, что возможна деструктуризация частицы в случае, если внешнее энергетическое воздействие превысит внутреннюю энергию, ...

Скачать
54356
1
8

ой работе определены следующие задачи: - рассмотреть структуру мирового рынка нефти; - рассмотреть проблемы истощения нефтяных ресурсов; - просмотреть какие могут быть последствия; - рассмотреть энергетическую безопасность национальных экономик; - выявить альтернативные источники. Основными источниками при написании курсовой работы послужили: Глава 1. Формирование мирового рынка нефтяных ...

Скачать
28836
1
0

... топлива. Подпитка энергией процессов образования нового вещества и развития происходит путем энергообмена с окружающей средой. Поэтому ученые разных стран интенсивно исследуют возможные виды альтернативных источников энергии. Рассмотрим некоторые известные виды разработанных новых энерготехнологий.   1. Вода - новый источник энергии В настоящее время многие ученые считают водород наиболее ...

Скачать
98539
0
0

... и согласования интересов, других нерыночных механизмов принятия совместных мер. Словом, преодоление экологического кризиса невозможно без новых подходов к формам и методам экономической глобализации. 3. Перспективы глобализации мировой экономики Глобальными можно назвать процессы, которые охватывают всю нашу планету. Глобализация – это то, что касается всей жизни земли. Глобализация – ...

0 комментариев


Наверх