5. Теоретический ряд динамики ВНП

Анализ динамики внп методом линейной регрессии

Эта линия отражает среднюю направленность (тенденцию) динамики ВНП за рассматриваемый период (1929-1992 гг.). Ее наклон соответствует среднегодовому темпу роста реального ВНП 2,5%, что совпадает со значением, полученным на основании рис. 3. Очевидно, что при изменении временного периода параметры линии будут изменяться. Зададимся целью определить внутри этого промежутка теоретическую линию с наибольшей корреляцией, то есть линию, наиболее точно отражающую тенденцию эмпирической кривой. Так как целью любого научного анализа в конечном итоге является прогноз динамики на ближайший период, то для нас целесообразным будет сокращение временного отрезка вправо. То есть, последовательно исключая из представленных данных значения, относящиеся к 1929 г., затем 1930 г. и так далее, мы рассчитываем каждый раз для оставшихся значений коэффициент корреляции и сравниваем его с другими коэффициентами. Итогом такого сравнения будет значение r = 0,995 и дисперсия 2,3%, что находится в пределах погрешности. При этом коэффициенте корреляции количественная модель линии тенденции выглядит следующим образом:

ВНП = 78 * Т-152000,

где Т измеряется в годах. Величина ошибки расчета коэффициентов в правой части составляет 2,3%.

Графически данная прямая представлена на рис. 5 темной линией. Коэффициент регрессии для нее равен 78, что соответствует среднему темпу роста реального ВНП 2,9% (это число практически совпадает с эмпирическими данными из других источников, указывающих на то, что с начала 50-х годов средний темп роста реального ВНП в США составлял около 3% в год).

Таким образом, в качестве основных выводов на данном этапе исследования можно выделить следующие результаты регрессионного анализа: построение линии тенденции динамики ВНП, расчет среднего темпа роста ВНП за рассматриваемый период и, наконец, расчет оптимальной (с наибольшей корреляцией) линии тенденции внутри рассматриваемого периода.

Особенности прогноза динамики ВНП методом линейной регрессии

Приведенный выше анализ позволяет также высказать ряд соображений, касающихся прогноза динамики ВНП. Имеется в виду использование полученных количественных моделей для определения величины ВНП в некоторый будущий период.

В связи с этим проблему экономического прогноза следует рассматривать как минимум в двух аспектах:

применимость полученной модели для расчета будущих значений ВНП;

определение прогнозируемого периода, т.е. периода, на котором возможно получение адекватных значений ВНП.

Обоснование применимости уравнения, полученного на основании данных за предыдущие годы, для прогнозирования значений ВНП на будущие периоды является достаточно сложной задачей, решение которой зависит от многих условий. И то, что теоретическая кривая с большой степенью точности соответствует эмпирическим данным, не является достаточным критерием открытия закона динамики ВНП. На это, в частности, указывал Н.Д. Кондратьев в своих работах по теории больших циклов. Сам Кондратьев сделал по этому поводу несколько важнейших оговорок, которые с некоторыми добавлениями использованы в данной работе.

Кондратьев, в частности, говорил о трех уровнях равновесия, которые сейчас называются уровнями равновесия кратко-, средне- и долгосрочных периодов. Критерием периодов равновесия является неизменность ряда параметров, существенных для каждого периода. Например, для краткосрочного периода таким параметром является цена.

Применимость тех или иных качественных зависимостей обусловливается периодом равновесия. Например, модель IS-LM применима в среднесрочном периоде и неприменима в долгосрочном периоде.

Условия внутри системы, соответствующие долгосрочному равновесию в долгосрочный период Т1, отличны от условий долгосрочного равновесия в долгосрочный период Т2.

Условия и уровни равновесия в различных периодах меняются, образуя кратко-, средне- и долгосрочные циклы.

Долгосрочные циклы меняются достаточно плавно.

Таким образом, с одной стороны, количественная модель, построенная на основании данных за один период равновесия, не будет адекватно описывать другой период (подтверждением этому служит отличие линейной регрессии за период 1929-1992 гг. от линейной регрессии за период 1958-1992 гг.), однако плавность перехода от одного долгосрочного периода к другому может служить условием применимости данной модели на некотором ограниченном временном промежутке. В качестве такого промежутка наиболее целесообразно взять период среднесрочного цикла, связь которого с долгосрочным циклом отмечалась в работах Н.Д. Кондратьева. Длительность такого цикла по разным оценкам составляет в среднем 10-11 лет.

С другой стороны, полученная линейная модель, как было отмечено выше, является лишь первым приближением линии тенденции динамического ряда ВНП и, соответственно, относится к кратковременному периоду. Это указывает на то, что период адекватного прогноза для линейной модели сокращается до 2-3 лет.

Выводы из проведенного анализа позволяют говорить об эффективности применения методов линейной регрессии в исследовании динамики макроэкономических агрегатов вообще и ВНП в частности.

Всю совокупность этих выводов можно разделить на два направления: эффективность методики линейной регрессии в анализе динамики макропоказателей и значение статистического анализа динамики макропоказателей в изучении закономерностей единого макроэкономического процесса.

В заключение необходимо отметить возрастающую роль теоретических исследований российской макроэкономики, в частности исследований, обращенных на совершенствование методик экономического прогнозирования. В данном контексте представленная работа видится как один из шагов, направленных на освещение возможностей математических методов в оценке состояния и развития экономической ситуа


Информация о работе «Анализ динамики внп методом линейной регрессии»
Раздел: Экономика
Количество знаков с пробелами: 21840
Количество таблиц: 3
Количество изображений: 4

Похожие работы

Скачать
57351
9
7

... компонентов: ·     конечное потребление товаров и услуг, ·     валовое накопление, ·     чистый экспорт товаров и услуг. Статистическое расхождение между произведенными и использованным валовым региональным продуктом может возникнуть ввиду различия источников данных и классификаций, используемых в расчетах разными методами, недостатка необходимой информации и других причин объективного и ...

Скачать
141398
7
25

... производства, чем (6.3.4), представляется равенство где - отнесенный к моменту t временной лаг, (). Обозначим и составим матрицы с помощью которых систему (6.3.1)-(6.3.5) перепишем в виде В математической экономике магистралью называется траектория экономического роста, на которой пропорции производственных показателей (такие как темп роста производства, темп снижения цен) неизменны ...

Скачать
55087
0
2

... . Слабые стороны социально-экономического положения в Орловской области (рис. 2.2). Рисунок 2.2 – Результат SWOT-анализа: слабые стороны социально-экономического положения Орловской области В соответствии со статистическими данными в Орловской области наблюдается снижение развития животноводства. До конца 2008 года сохранялась тенденция сокращения крупного рогатого скота в ...

Скачать
145543
22
1

... оценка работы предприятия по использованию возможностей увеличения прибыли и рентабельности; -     разработка мероприятий по использованию выявленных резервов. Во ворой главе в третьем параграфе при анализе финансовых результатов был обнаружен убыток от реализации на 01.01.2000г. Как выяснилось при дальнейшем анализе убыток был вызван нарушениями хозяйственной дисциплины на 25781 тыс.руб. это ...

0 комментариев


Наверх