2. Физические основы применения геоакустического каротажа

2.1. Модель акустически активной геосреды

Земная кора является открытой термодинамической системой с иерархически блочным строением и находится в напряженном состоянии под действием внешних и внутренних сил [[15] ] распределение напряжений зависит не только от действующих нагрузок, но и от степени неоднородности, трещиноватости массивов пород; изменение напряженного состояния пород вызывает их деформацию, приводит к перестройке в контактных поверхностях в системе трещин, к появлению новых дефектов, что сопровождается акустической эмиссией. Такова общая схема процессов.

По существу, это механизм рассеянных разрывов своеобразных наноземлетрясений, который функционирует геологически длительное время даже в тектонически стабильных областях. Но что приводит в действие подобный механизм, почему его эффективность выше в зонах большой нагруженности пород, почему он не подавляется значительным литостатическим давлением на больших глубинах?

Для получения некоторых оценок рассмотрим блочную модель массива горной породы.

По известным критериям прочность тела зависит от числа и размеров дефектов. А эти характеристики в ряде случаев можно определить. Воспользуемся, например, условием Гриффитса для разрывного напряжения при сдвиге:

Сейсмоакустические шумы. Применение геоакустического каротажа

где G – модуль сдвига;

W – плотность поверхностной энергии;

1 – критическая длина трещины;

μ – коэффициент Пуассона.

Во многих случаях по экспериментальным данным известно распределение трещин по размерам. Часто оно имеет нормальное распределение [[16] ].

Количество вновь появившихся дефектов определяется формулой:

Сейсмоакустические шумы. Применение геоакустического каротажа

Отсюда можно оценить число трещин, возникающих в единицу времени:

Сейсмоакустические шумы. Применение геоакустического каротажа 

Тем самым определяется интенсивность акустической эмиссии, сопровождающей образование дефектов.

Т.к. интенсивность акустической эмиссии пропорциональна числу связей или дефектов N в объеме, зависит экспоненциально от энергии активации разрывов при постоянной нагрузке а0 и от отношения действующего переменного напряжения к среднему значению разрывного напряжения, которое в данном случае определено как отношение энергии активации разрывов к структурному параметру, характеризующему перенапряжения на неоднородностях среды Сейсмоакустические шумы. Применение геоакустического каротажа.

Этот вывод имеет и практическую значимость. Например, если толща пород охвачена одним режимом нагружения, то зоны с повышенными значениями трещиноватости будут выделяться аномалиями ГАШ, что и наблюдается на практике (рис.1)Ó . Конечно, возможны случаи, когда трещиноватость увеличивается, а уровень шума не меняется. Согласно предыдущей формуле соответствующая компенсация в потере прочности может осуществляться за счет повышения разрывного напряжения. Наблюдения подтверждают этот вывод (рис.2)Ó .

Эксперименты на образцах горных пород показывают, что с возрастанием всестороннего давления число трещин уменьшается, повышается прочность пород. В реальных условиях в верхней части земной коры наблюдаются существенные отклонения от этих закономерностей, что обусловлено рядом причин, в том числе непрерывными физико-химическими процессами в проницаемых, заполненных флюидами и газами горных массивах. Это проявляется во временных вариациях ГАШ, в том числе и на больших глубинах. Прочность хрупких пород хорошо апроксимируется модифицированным условием Кулона-Мора [[17] ]:

Сейсмоакустические шумы. Применение геоакустического каротажа 

где Сейсмоакустические шумы. Применение геоакустического каротажа - сцепление пород, f - коэффициент трения при сдвиге, Сейсмоакустические шумы. Применение геоакустического каротажа - нормальное напряжение и давление в жидкости, заполняющей трещину.

Когда f мало, а Сейсмоакустические шумы. Применение геоакустического каротажа и Р близки, что выполняется в замкнутых объемах, то на больших глубинах прочность на сдвиг будет в основном определяться сцеплением пород. Как показывают лабораторные эксперименты, оно растет с давлением, так как с давлением уменьшаются размеры дефектов и увеличиваются упругие модули. Но напряжение на разрыв будет расти только в том случае, когда поверхностная энергия не будет эквивалентно уменьшаться. На самом деле с глубиной флюиды могут понижать свободную поверхностную энергию трещин.

В понижение прочности пород вносят также свои вклад коррозия под напряжением, электрохимические процессы и, наконец, рост температуры с глубиной. Отсюда видно, что в земной коре существуют конкурирующие повышению литостатического давления процессы и пока породы остаются хрупкими, могут существовать условия, при которых естественная геоакустическая активность не подавляется.


Информация о работе «Сейсмоакустические шумы. Применение геоакустического каротажа»
Раздел: География
Количество знаков с пробелами: 34702
Количество таблиц: 3
Количество изображений: 0

0 комментариев


Наверх