5. Определение внешних нагрузок на кран.
5.1 Определение ветровых нагрузок (ГОСТ 1451-77)
Для рабочего состояния:
Wp=0.15*F**c*n
F-наветренная площадь
-коэффициент сплошности
с-аэродинамический коэффициент
n-высотный коэффициент
Площадь моста :
Fm=lhm=36.8*3.2=117.76 m2
Площадь жёсткой опоры :
Fжо=0.5lж(h-hm)=0.5*4.16*(28-3.2)=51.58m2
Площадь гибкой опоры :
Fго=lго(h-hm)=0.8*(28-3.2)=19.84
Ветровая нагрузка в в рабочем состоянии
элемент | F |
| n | c | Wp | x | y | Wpx | Wpy |
мост | 117.76 | 0.45 | 1.37 | 1.4 | 15.25 | 13.92 | 18.70 | 212.28 | 285.20 |
ж.о. | 51.58 | 0.45 | 1.25 | 1.4 | 6.1 | 1.39 | 16.53 | -8.50 | 100.80 |
г.о. | 19.84 | 0.45 | 1.25 | 1.4 | 2.34 | 32 | 12.4 | 80 | 29 |
23.96 | 283.78 | 415 | |||||||
груз | 25 | 1 | 1.25 | 1.2 | 24.8 | 139.50 |
Поскольку опоры лежат в разных ветровых с мостом , то и значение n выбираем соответственно.
Для нерабочего состояния :
Wнр=0.7*F**n*c*
Ветровая нагрузка в нерабочем состоянии :
элемент | F |
| n | c | Wнр | x | y | Wнрx | Wнрy |
мост | 117.76 | 0.45 | 1.37 | 1.4 | 78.26 | 13.92 | 18.70 | 1089.4 | 1463.5 |
ж.о. | 51.58 | 0.45 | 1.25 | 1.4 | 31.28 | 1.39 | 16.53 | 43.48 | 488.55 |
г.о. | 19.84 | 0.45 | 1.25 | 1.4 | 12.03 | 32 | 12.4 | 384.9 | 149.18 |
| 121.57 | 1430.8 | 2101.5 |
5.1. Определение инерционных нагрузок.
Инерционные нагрузки определяются для периодов неустановившегося движения крана, рагона и торможения крана в целом , его грузовой тележки , а также механизма подъема. Для погрузочно-разгрузочных козловых кранов принимаем допустимое ускорение а=0.3м/с2. Координату точки подвеса груза принимаем равной h, поскольку грузовая тележка движется по верхней панели моста.
Инерционные нагрузки , действующие в направлении подкрановых путей :
движущаяся масса | сила инерции Р | координата силы у | опрокидывающиймо момент |
кран | Рк=Gка=24 | 15.63 | 375.12 |
груз | Ргр=Qа=15 | 24.8 | 372 |
5.2.1. Горизонтальная инерционная нагрузка направленная поперёк подкрановых путей.
Она возникает при разгоне и торможении тележки с грузом
Рт=(Gт+Q)a=(7.5+50)*0.3=17.25
5.2.2. Вертикальная инерционная нагрузка направленная поперёк подкрановых путей.
Она возникает при поднимании и опускании , раразгоне и торможении груза
Ргр=1.1Qа=1.1*50*0.3=16.5
6. Проверка устойчивости крана в рабочем и нерабочем состоянии :
Устойчивость в рабочем состоянии оценивается коэффициентом , который определяется отношением удерживающего момента , создаваемого массовыми силами крана и груза с учётом влияния допустимого при работе уклона, к опрокидывающему моменту , создаваемому внешними нагрузками, отросительно ребра опрокидывания. это отношение во всех случаях должно быть не менее 1.15
Рассмотрим сумму удерживающих моментов для 1-го расчётного состояния :
уд=10Gк(Б/2соs-yкsin)+(10Q-Pгр)*(Б/2cos-yгsin)=5062.94
для козловых кранов максимально допустимое =00101
Рассмотрим сумму опрокидывающих моментов для 1-го расчётного случая :
опр=Pкук+Ргрупг+ру+Wгрупг=1301.62
Проверка устойчивости К=5062.94/1301.62=3.9
Рассмотрим 2-ое расчётное положение :
Условия : кран движется под углом к горизонту с углом a , ветровая нагрузка направлена в сторону движения крана .
Рассмотрим сумму удерживающих моментов :
=10(Б/2соs-sin)=3163.72
Рассмотрим сумму опрокидывающих моментов :
е=+еy=790.12
Проверка устойчивости К=3163.72/790.12=4
Проверка устойчивости крана в нерабочем положении
Рассмотрим сумму удерживающих моментов :
е =10(Б/2cosa-sina)=3163.72
Рассмотрим сумму опрокидывающих моментов :
е=еy=2101.5
Проверка устойчивости К=3163.72/2101.5
7. Опредиление опорных давлений .
7.1 . Максимальная нагрузка на одну из четырёх опор :
Для рабочего состояния :
Для нерабочего состояния :
7.2. Расчётная нагрузка на одно колесо .
Поскольку грузоподъёмность расчитываемого крана 50 т. , принимаем число колёс в каждой опоре равной 2 .
Выбираем двухребордное колесо , конического исполнения по ГОСТ 3569-74 с нагрузкой на рельс 320kH,диаметром D=710 мм , шириной В= 100мм , рельс КР-80 , радиус r=400мм
7.3. Выбор материала крановых колёс .
где - контактное напряжение смятия
mk - безразмерный коэффициент , зависящий от соотношения D/2r , по таблице принимаем 0.47
Принимаем сталь 40ХН с =2200мПа
8. Расчёт и подбор механизма подъёма груза .
8.1. Краткая характеристика и задачи расчёта .
Механизм подъёма груза предназначен для перемещения груза в вертикальном направлении . Он выбирается в зависимости от грузоподъёмности . Для нашего случая механизм включает в себя сдвоенный пятикратный полиспаст .
Привод механизма подъёма и опускания груза включает в себя лебёдку механизма подъёма . Крутящий момент , создаваемый электродвигателем передаётся на редуктор через муфту . Редуктор предназначен для уменьшения числа оборотов и увеличения крутящего момента на барабане .
Барабан предназначен для преобразованя вращательного движения привода в поступательное движение каната .
Схема подвески груза :
8.1. КПД полиспаста :
-кратность полиспаста =5
- кпд одного блока =0.98
8.2. Усилие в ветви каната , навиваемой на барабан :
z -число полиспастов z=2
-коэффициент грузоподъёмности , учитывающий массу грузозахватных элементов =1.1
8.3. Расчётная разрывная нагрузка :
К=5.5 коэффициент запаса прочности
8.4. Выбор каната по расчётному разрывному усилию :
Выбираем канат двойной свивки типа ЛК-РО конструкции 6*36 ГОСТ 7669-80 с разрывным усилием не менее 364.5 кН и диаметром d=27 мм
8.5. Конструктивный диаметр барабана :
е- коэффициент пропорциональности в зависимости от режима работы е=25
Окончательно диаметр выбираем из стандарного ряда , ближайшее большее Dб=710
8.6. Рабочая длинна барабана с однослойной навивкой каната :
а-число ветвей каната а=2
t-шаг винтовой нарезки , принимаемый в зависимости от диаметра барабана t=31.25
Полная длинна барабана :
8.8. Толщина стенки барабана :
Принимаем из условия
Принимаем =27
8.9. Выбор материала барабана :
Напряжения сжатия равны :
Напряжения , возникающие при изгибе :
Напряжения , возникающие при кручении :
Суммарные напряжения возникающие в теле барабана :
Выбираем материал сталь 35Л у , которой предел прочности при изгибе
Кз -коэффициент запаса прочности Кз=1.1
Следовательно нагрузки на барабан не превосходят допустимых .
8.10. Усилия в ветви каната , набегающей на барабан и закреплённой в нём :
-коэффициент трения =0.12
-дуга охвата канатом барабана
8.11. Определение силы затяжения на одну шпильку :
z-число шпилек
Сила затяжки на всё соединение :
Число шпилек :z=4
Принимаем резьбу d=24
-коэффициент трения в резьбе
Суммарное напряжение в теле шпильки :
предел прочности
-предел текучести
Так как 146.96196 -число шпилек удовлетворяет условию прочности .
8.12. Подбор крюка :
Выбираем подвеску крюковую крановую , грузоподъёмностью 50 т. по ГОСТ 24.191.08-87 , для средних условий работы , с пятью блоками , массой 1361 кг , типоразмер 5-50-710 под канат диаметра 2328
8.13. Частота вращения барабана :
8.14. Необходимая мощность механизма подъёма груза :
-кпд механических передач
-крутящий момент на барабане .
По таблицам принимаем двигатель типа МТКН 412-6
мощьность N=36 кВт , частота вращения n=920 об/мин , номинальный момент двигателя Mн=0.37 кНм
8.15. Выбор редуктора :
Принимаем редуктор цилиндрический вертикального исполнения ВКУ-765 , передаточное число i=71 , межосевое расстояние а=765 .
8.16. Выбор муфты :
Выбираем зубчатую муфту с тормозным барабаном . Передаваемый муфтой крутящий момент :
По таблицам выбираем муфту с передаваемым моментом 710 Н , с тормозным барабаном Dt=710 , тип МЗ-2 , момент инерции J=0.05 кгм2
8.17. Подбор тормоза :
Расчётный тормозной момент :
Кт-коэффициент запаса торможения Кт=1.75
Выбираем тормоз ТКГ-300 , тормозной момент 0.8 кН
8.18. Определение времени разгона механизма .
8.20. Проверка тормоза по мощности трения .
т.к. 0.31.3 ,где 1.3--допускаемая мощность торможения , значит тормоз подходит .
9. Расчет и подбор оборудования механизма перемещения крана.
Механизм передвижения крана служит для перемещения крана по рельсам . Кинематическая схема механизма :
1-двигатель
2-муфта
3-редуктор
4-тормоз
5-шестерни
6-ходовое колесо
9.1. Общее статическое сопротивление передвижению крана без груза :
Dk -диаметр ходового колеса
f -коэффициент трения кочения f=0.0007
-коэффициент трения качения в подшипниках ходовых колёс
r-радиус цапфы r=0.071 м
9.2. Сопротивление качению крана без груза :
Kобщ -число колёс крана
Кпр-число приводных колёс
9.3. Проверка коэффициента сцепления :
-коэффициент сцепления колеса с мокрым рельсом
так как 3>1.2 , то по запасу сцепления механизм подходит
9.4. Суммарное статическое сопротивление передвижению жёсткой опоры :
xв -координата центра ветрового давления
9.5. Расчётная мощность одного двигателя :
Выбираем двигатель MTF-111-6 , мощность N=4.1 кВт , частота вращения n=870 об/мин , момент инерции J=0.048 , максимальный момент М=85 Нм
9.6. Подбор редуктора .
Частота вращения колёс крана :
Необходимое передаточное отношение механизма передвижения крана :
Расчётное передаточное отношение редуктора :
iоп -передаточное отношение открытой передачи
Выбираем редуктор горизонтального исполнения серии Ц2У-250 , с передаточным отношением i=40 .
9.7. Выбор тормоза механизма передвижения .
Выбираем тормоз типа ТКТ-200 , с тормозным моментом М=160 Нм
10. Расчёт и подбор механизма передвижения тележки .
Механизм передвижения тележки служит для перемещения по рельсам , положенной на балку моста , тележки , несущей на себе грузозахватное устройство . Перемещение тележки осуществляется при помощи канатного устройства , лебёдкой . Схема запасовки каната механизма перемещения тележки :
10.1. Ориентировочное значение нагрузки на каток тележки :
Выбираем катки тележки - двухбордные колёса d=320 мм, ширина В=80 мм .
Напряжение сжатия колеса при точечном контакте :
Выбираем материал сталь 40ХН , для которого =2200мПа
10.2. Общее сопротивление перемещения тележки :
r-радиус цапфы r=32 мм
С учётом дополнительного сопротивления от натяжения грузового каната и провисания , тяговое усилие в канате :
Расчётная разрывная нагрузка на канат :
к-коэффициент запаса к=5.5
Принимаем канат двойной свивки типа ЛК-РО конструкции 6*36 ГОСТ 7669-80 , диаметр каната d=11.5 мм , разрывное усилие 75.1 мПа
маркировочная группа 1764 мПа .
10.3. Диаметр тягового барабана и частота его вращения :
Принимаем Dтб=300 мм
Частота вращения nтб=20.44 об/мин
10.4. Мощность приводного двигателя :
-кпд механическое
-кпд блока
n-число блоков n=3
Выбираем двигатель MTF-112-6 , мощность N=5.8 кВт , частота вращения n=915 об/мин , максимальный момент М=137 Нм , момент инерции J=0.064 кг....
10.5. Необходимое передаточное отношение механизма :
Принимаем редуктор ЦЗУ-160 , с передаточным отношением i=45 , крутящем моментом М=1000 Нм
10.6. Выбор муфты .
Крутящий момент на барабане :
Принимаем муфту МЗ-1 , передаваемый момент М=0.2 кНм , диаметр тормозного барабана D=200 мм , момент инерции муфты J=0.032kHм
10.7. Выбор тормоза .
Расчётный тормозной момент :
Выбираем тормоз ТТ-200 , тормозной момент 0.2 кНм
11. Расчёт металлоконструкции крана .
Принимаем : мост крана выполнен из двух коробчатых балок , по которым проложены рельсы грузовой тележки .
Принимаем высоту балок 0.75 м , ширину 0.05 м . Сталь горячекатанная . Модуль упругости Е=206*10 Па , расчётное сопротивление R=240*10Па .
Вес одной балки(распределённаянагрузка) 0.94 кН/мвес груза и
грузоподъемной тележки F=57.5 кН
11.1.Построение эпюр .
Реакции опор от действия груза :
F/2=28.75 кН
Воздействие от распределённой нагрузки :
ql/2=0.99*32/2=15.04 кН
Построение эпюр изгибающих момеитов .
От действий груза :
От действия распределённой нагрузки :
11.2. Осевой момент сопротивления сечения :
Осевой момент инерции :
11.3. Нормальные напряжения возникающие при изгибе балки моста :
так как расчётное сопротивление R=240 мПа , а напряжения , возникающие в балке 12.9 мПа , то прочность балки , при статическом приложении нагрузки , обеспечина .
12. Расчёт металлоконструкции при динамическом действии нагрузки .
12.1. Расчёт на ударное приложение нагрузки .
При расчёте , для его упрощения принимаем ряд допущении :
1. при ударной нагрузке в элементах конструкции возникают только упругие деформации и расчитываемая система является линейно диформируемой
2. сам удар считается неупругим
3. потеря части энергии на нагревание соударяющихся тел и местные деформации в зоне контакта не учитываются
Принимаем следующие условия расчёта :
груз весом 50кН падает с высоты на середину свободно лежащей балки моста пролётом l=32 м , расчётное сопротивление стали R=240 мПа ,
допустимая величина прогиба для козловых кранов с гибкой опорой fд=1/1000 или 32/32000 .
Прогиб динамический :
,но
где k-динамический коэффициент
тогда :
k=0 , k=8 ,т.к. при k=0 рассчёты не имеют смысла принимаем k=8.
12.2 Нормальные напряжения от прогиба при ударе :
т.к.
то балка удовлетворяет условиям на прочность при ударе.
ЛИТЕРАТУРА
1. Курсовое проектирование грузоподъёмных машин . Ред . Козак С.А.
-М:Высш. шк., 1989.-319 с.
2. Справочник по кранам . Александров М.П.,Гохберг М.М., том 1,2.
-Л:Машиностроение ,1988.
3. Подъёмно-транспортные машины . Атлас конструкций .,под ред. Александрова М.П. и Решетникова Д.Н.-М.
0 комментариев