1.4. Зависимость удельного сопротивления от температуры.

Сверхпроводимость.

С изменением температуры удельное сопротивление изме­няется:

р=p0*(1+at),

гдер 0 — удельное сопротивление проводника при 0°С, ( темпе­ратура по шкале Цельсия) — удельное сопротивление при тем­пературе ^, а —. температурный коэффициент сопротивления. Этот коэффициент характеризует зависимость сопротивления ве­щества от температуры.

Температурный коэффициент сопротивления равен относи­тельному изменению сопротивления проводника при нагревании на 1°К. Его можно определить из условия:

R-R0/R=at,

если До — сопротивление проводника при 0°С, К — сопротивление проводника при температуре {.

Сопротивление проводника меняется за счет изменения удельного сопротивления, так как при нагревании геометричес­кие размеры проводника меняются незначительно.

Для всех металлов к > 1 и мало меняется при изменении температуры проводника.

Удельное сопротивление проводника линейно зависит от тем­пературы (рис. 61). У чистых металлов, а =1/273*K-1, для раство­ров электролитов, а < 0 и с увеличением температуры сопротивле­ние уменьшается. ,

столкновении с ионами электро­ны теряют скорость направлен­ного движения. Это и приводит

Возрастание удельного со­противления можно объяснить тем, что с ростом температуры амплитуда колебаний ионов кристаллической решетки ме­таллов увеличивается и возрас­тает вероятность их столкнове­ния с электронами. Это и приводит к возрастанию удельного сопротивления. Столкновении с ионами электроны теряют скорость направленного движения.


Рис.2 Зависимость удельного сопротивления от температуры.


Рис.3 Зависимость удельного сопротивле­ния от температуры для ртути.

Зависимость сопротивле­ния металлов от температуры используется, например, в тер­мометрах сопротивления.

Многие проводники обла­дают свойством сверхпроводи­мости, состоящей в том, что их сопротивление скачком падает до нуля при охлаждении ниже определенной критической температуры Т^, характерной для данного материала. Такие вещества получили название сверхпроводники.

Впервые это явление наблюдал в 1911 г. нидерландский физик Гейке Камерлинг-Оннес (1853-1926). Он обнаружил, что ртуть при Т = 4,15°К переходит в новое состояние, названное сверхпроводящим (рис. 62). Позже им было установлено, что электрическое сопротивление ртути восстанавливается при T < Tk в достаточно сильном магнитном поле. Прохождение тока в сверх­проводниках происходит без потерь энергии, поэтому их исполь­зуют в электромагнитах со сверхпроводящей обмоткой. На основе явления сверхпроводимости иногда работают элементы памяти счетно-вычислительных устройств. Устройство переключающих элементов электронных вычислительных машин иногда основано на принципе разрушения сверхпроводящего состояния магнит­ным полем.

Ведутся исследования по созданию сверхпроводящих линий электропередачи, но главная трудность здесь в необходимости глубокого охлаждения всей линии для перехода в сверхпроводящее состояние до температуры ниже 20°К.

1.5. Последовательное и параллельное соединение проводников.

На практике электрические цепи представляют собой сово­купность различных проводников, соединенных между собой оп­ределенным образом. Наиболее часто встречающимися типами соединений проводников являются последовательное и парал­лельное соединения.

Последовательное соединение проводников

При таком соединении все проводники включаются в цепь поочередно друг за другом. Примером такого типа соединения проводников может быть соединение ламп в елочной гирлянде:

выход из строя одной лампы размыкает всю цепь.

Рассмотрим случай последовательного соединения трех про­водников сопротивлениями J^, Д^, Ну подключенных к источни­ку постоянного тока. Схема такой электрической цепи представ­лена на рисунке.

Рис.
4

Амперметром А измеряют общую силу тока JT в цепи. Вольт­метрами V1, V2, V3 измеряют напряжение на каждом проводнике, а вольтметром V — напряжение на всем участке цепи.

Расчет токов, напряжений и сопротивлений на участке цепи при таком соединении делают с помощью четырех правил.

а) Сила тока одинакова во всех участках цепи:

I1=I2=I3=I=const.

так как в случае постоянного тока через любое сечение провод­ника за определенный интервал времени проходит один и тот же заряд.

б) Падение напряжения в цепи равно сумме падений напряжений на отдельных участках:

U1+U2+U3=U

Это можно установить из опытов по показаниям вольтметров.

в) Падение напряжения на проводниках прямо пропорционально их сопротивлениям:

U1/U2=R1/R2

Согласно закону Ома для участка цепи и правилу (а):

I=U1/R1;

I2=U2/R2=>U1/R1=U1/R2, откуда

U1/U2=R1/R2

г) Общее сопротивление цепи равно сумме сопротивлений отдель­ных участков:

R=R1+R2+R3

Воспользуемся законом Ома для участка цепи и правилами (а) и (б):

I=U/R=>U=I*R

Аналогично:

U1=I*R1, U2=I*R2, U3=I*R3

U=U1+U2+U3=I*R1+I*R2+I*R3=I*(R1+R2+R3)=I*R

 Откуда получим формулу для общего сопротивления цепи:

R=R1+R2+R3

Параллельное соединение

Например, соединение приборов в наших квартирах, когда выход из строя какого-то прибора не отражается на работе ос­тальных.

При параллельном соединении трех проводников сопротивле­ниями R1, R2 и R3 их начала, и концы имеют общие точки подклю­чения к источнику тока. Все вместе параллельно соединенные проводники составляют разветвление, а каждый из них называ­ется ветвью. Схема соединения изображена на рисунке.


Рис.5

Силу тока в каждой ветви измеряют амперметрами A1, A2 и A3. Для расчета токов, напряжений и сопротивлений также пользу­ются четырьмя правилами:

а) Падение напряжения в параллельно соединенных участках цепи одинаково:

U1=U2=U3=U=const.

так как во всех случаях падение напряжения измеряют между

одними и теми же точками.

б) Сила тока в неразветвленной части цепи равна сумме сил токов, текущих в разветвленных участках цепи:

I1=I2=I3=I

в) Сила тока в разветвленных участках цепи обратно пропорцио­нальна их сопротивлениям:

I1:I2:I3=1/R1:1/R2:1/R3

Воспользуемся законом Ома для участка цепи:

I1=U1/R1=>U1=I1*R1

Аналогично:

U2=I2*R2

U3=I3*R3

 Согласно правилу (а):

 U1=U2=U3=>I1*R1=I2*R2=I3*R3, откуда

I1:I2:I3=1/R1:1/R2:1/R3

г) Общее сопротивление цепи:

1/R=1/R1+1/R2+1/R3

Согласно закону Ома для участка цепи:

I=U/R

и для каждой ветви:

I1=U1/R1; I2=U2/R2; I3=U3/R3

Используя правила (а) и (б), получим:

I=I1+I2+I3=U/R1+U/R2+U/R3=U*(1/R1+1/R2+1/R3) =U/R,

откуда

1/R=1/R1+1/R2+1/R3


Информация о работе «Расчет разветвленной электрической цепи постоянного тока»
Раздел: Физика
Количество знаков с пробелами: 49110
Количество таблиц: 0
Количество изображений: 19

Похожие работы

Скачать
6299
1
1

... (10) Соберите цепи по схемам 8, 9, в которых реализуются обе схемы соединения. Рассчитайте и измерьте силу тока в цепи при этих соединениях. В выводе сравните расчетные и измеренные значения. Отчет по лабораторной работе № 3 Изучение применения закона Ома для расчета цепей постоянного тока выполненной учащимся школы «Поиск» ………………………………………………………………………………… «…….»………….. 200….

Скачать
3378
0
15

вях электрической цепи постоянного тока. Задание состоит из двух частей. Первая часть задания Рассчитать токи ветвей методом узловых напряжений: 1 нарисовать заданную вариантом схему электрической цепи. Указать положительные направления токов ветвей; 2 записать каноническую форму уравнений метода и определить коэффициенты этой формы; 3 рассчитать узловые напряжения; 4 рассчитать токи ветвей ...

Скачать
20700
2
35

чает в себя источники мощности (активные элементы) и приемники (пассивные элементы). В качестве пассивного линейного элемента в цепях постоянного тока выступает резистор, имеющий электрическое сопротивление R. Единица измерения Ом. Величина, обратная сопротивлению, называется электрической проводимостью: G = 1/R. Единица измерения См - сименс. В качестве активных элементов - источников ...

Скачать
4317
0
0

... один контурный ток, то действующий в ветви ток будет равен контурному: Составляем баланс мощности 227,0485=229,3138 ЗАДАНИЕ 3   СИМВОЛИЧЕСКИЙ РАСЧЕТ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА   Задача 1 По данным табл. 9,10,11 рассчитать токи в ветвях заданной цепи при f = 50 Гц. Используя данные расчета, записать мгновенное значение указанной в табл. 9 величины. Составить баланс мощностей. В ...

0 комментариев


Наверх